An Iterative Approach for Web Catalog Integration with Support Vector Machines
Web catalog integration is an emerging problem in current digital content management. Past studies show that more improvement on integration accuracy can be achieved with advanced classifiers. Because Support Vector Machine (SVM) has shown its supremeness in recent research, we propose an iterative...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Web catalog integration is an emerging problem in current digital content management. Past studies show that more improvement on integration accuracy can be achieved with advanced classifiers. Because Support Vector Machine (SVM) has shown its supremeness in recent research, we propose an iterative SVM-based approach (SVM-IA) to improve the integration performance. We have conducted experiments of real-world catalog integration to evaluate the performance of SVM-IA and cross-training SVM. The results show that SVM-IA has prominent accuracy performance, and the performance is more stable. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11562382_71 |