Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering
We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore res...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 538 |
---|---|
container_issue | |
container_start_page | 530 |
container_title | |
container_volume | |
creator | Ding, Chris He, Xiaofeng Simon, Horst D. |
description | We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore resolving cluster assignment difficulty in spectral relaxation. We derive a multiplicative updating algorithm to solve the nonnegative relaxation problem. The method is briefly extended to semi-supervised classification and semi-supervised clustering. |
doi_str_mv | 10.1007/11564096_51 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17324987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17324987</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-bd34c12979833b551f2210ee37d9ea2bc9e09e188a8d174a3b0dccd85c07ed2a3</originalsourceid><addsrcrecordid>eNpNULlOxDAUNJfEsmzFD7ihoAj4-TmxXaLlFAtIHHX04jhRIDhRHBD8PVktBdOMNDMajYaxIxCnIIQ-A0gzJWyWp7DFDjBVAiGzUm6zGWQACaKyOxtDWqnQ7LKZQCETqxXus0WMb2ICgtEKZuzioQvB1zQ2X56vqB4o1A0F_uRb-p7ULvCu4nfJvacQOYWSP_fejQO1fNl-xtEPTagP2V5FbfSLP56z16vLl-VNsnq8vl2er5Jegh2TokTlQFptDWKRplBJCcJ71KX1JAtnvbAejCFTglaEhSidK03qhPalJJyz401vT9FRW01jXRPzfmg-aPjJQaNU1ugpd7LJxX49zw950XXvMQeRrz_M_32IvzetXhU</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering</title><source>Springer Books</source><creator>Ding, Chris ; He, Xiaofeng ; Simon, Horst D.</creator><contributor>Torgo, Luís ; Camacho, Rui ; Gama, João ; Brazdil, Pavel B. ; Jorge, Alípio Mário</contributor><creatorcontrib>Ding, Chris ; He, Xiaofeng ; Simon, Horst D. ; Torgo, Luís ; Camacho, Rui ; Gama, João ; Brazdil, Pavel B. ; Jorge, Alípio Mário</creatorcontrib><description>We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore resolving cluster assignment difficulty in spectral relaxation. We derive a multiplicative updating algorithm to solve the nonnegative relaxation problem. The method is briefly extended to semi-supervised classification and semi-supervised clustering.</description><edition>1ère éd</edition><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540292438</identifier><identifier>ISBN: 9783540292432</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316922</identifier><identifier>EISBN: 9783540316923</identifier><identifier>DOI: 10.1007/11564096_51</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Bipartite Graph ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Nonnegative Matrix Factorization ; Simultaneous Cluster ; Spectral Cluster ; Spectral Relaxation</subject><ispartof>Lecture notes in computer science, 2005, p.530-538</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11564096_51$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11564096_51$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27903,38233,41420,42489</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17324987$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Torgo, Luís</contributor><contributor>Camacho, Rui</contributor><contributor>Gama, João</contributor><contributor>Brazdil, Pavel B.</contributor><contributor>Jorge, Alípio Mário</contributor><creatorcontrib>Ding, Chris</creatorcontrib><creatorcontrib>He, Xiaofeng</creatorcontrib><creatorcontrib>Simon, Horst D.</creatorcontrib><title>Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering</title><title>Lecture notes in computer science</title><description>We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore resolving cluster assignment difficulty in spectral relaxation. We derive a multiplicative updating algorithm to solve the nonnegative relaxation problem. The method is briefly extended to semi-supervised classification and semi-supervised clustering.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bipartite Graph</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Nonnegative Matrix Factorization</subject><subject>Simultaneous Cluster</subject><subject>Spectral Cluster</subject><subject>Spectral Relaxation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540292438</isbn><isbn>9783540292432</isbn><isbn>3540316922</isbn><isbn>9783540316923</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNULlOxDAUNJfEsmzFD7ihoAj4-TmxXaLlFAtIHHX04jhRIDhRHBD8PVktBdOMNDMajYaxIxCnIIQ-A0gzJWyWp7DFDjBVAiGzUm6zGWQACaKyOxtDWqnQ7LKZQCETqxXus0WMb2ICgtEKZuzioQvB1zQ2X56vqB4o1A0F_uRb-p7ULvCu4nfJvacQOYWSP_fejQO1fNl-xtEPTagP2V5FbfSLP56z16vLl-VNsnq8vl2er5Jegh2TokTlQFptDWKRplBJCcJ71KX1JAtnvbAejCFTglaEhSidK03qhPalJJyz401vT9FRW01jXRPzfmg-aPjJQaNU1ugpd7LJxX49zw950XXvMQeRrz_M_32IvzetXhU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ding, Chris</creator><creator>He, Xiaofeng</creator><creator>Simon, Horst D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering</title><author>Ding, Chris ; He, Xiaofeng ; Simon, Horst D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-bd34c12979833b551f2210ee37d9ea2bc9e09e188a8d174a3b0dccd85c07ed2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bipartite Graph</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Nonnegative Matrix Factorization</topic><topic>Simultaneous Cluster</topic><topic>Spectral Cluster</topic><topic>Spectral Relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Chris</creatorcontrib><creatorcontrib>He, Xiaofeng</creatorcontrib><creatorcontrib>Simon, Horst D.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Chris</au><au>He, Xiaofeng</au><au>Simon, Horst D.</au><au>Torgo, Luís</au><au>Camacho, Rui</au><au>Gama, João</au><au>Brazdil, Pavel B.</au><au>Jorge, Alípio Mário</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>530</spage><epage>538</epage><pages>530-538</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540292438</isbn><isbn>9783540292432</isbn><eisbn>3540316922</eisbn><eisbn>9783540316923</eisbn><abstract>We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore resolving cluster assignment difficulty in spectral relaxation. We derive a multiplicative updating algorithm to solve the nonnegative relaxation problem. The method is briefly extended to semi-supervised classification and semi-supervised clustering.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11564096_51</doi><tpages>9</tpages><edition>1ère éd</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2005, p.530-538 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17324987 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Bipartite Graph Computer science control theory systems Exact sciences and technology Learning and adaptive systems Nonnegative Matrix Factorization Simultaneous Cluster Spectral Cluster Spectral Relaxation |
title | Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonnegative%20Lagrangian%20Relaxation%20of%20K-Means%20and%20Spectral%20Clustering&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Ding,%20Chris&rft.date=2005&rft.spage=530&rft.epage=538&rft.pages=530-538&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540292438&rft.isbn_list=9783540292432&rft_id=info:doi/10.1007/11564096_51&rft_dat=%3Cpascalfrancis_sprin%3E17324987%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316922&rft.eisbn_list=9783540316923&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |