Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering

We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ding, Chris, He, Xiaofeng, Simon, Horst D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue
container_start_page 530
container_title
container_volume
creator Ding, Chris
He, Xiaofeng
Simon, Horst D.
description We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore resolving cluster assignment difficulty in spectral relaxation. We derive a multiplicative updating algorithm to solve the nonnegative relaxation problem. The method is briefly extended to semi-supervised classification and semi-supervised clustering.
doi_str_mv 10.1007/11564096_51
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17324987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17324987</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-bd34c12979833b551f2210ee37d9ea2bc9e09e188a8d174a3b0dccd85c07ed2a3</originalsourceid><addsrcrecordid>eNpNULlOxDAUNJfEsmzFD7ihoAj4-TmxXaLlFAtIHHX04jhRIDhRHBD8PVktBdOMNDMajYaxIxCnIIQ-A0gzJWyWp7DFDjBVAiGzUm6zGWQACaKyOxtDWqnQ7LKZQCETqxXus0WMb2ICgtEKZuzioQvB1zQ2X56vqB4o1A0F_uRb-p7ULvCu4nfJvacQOYWSP_fejQO1fNl-xtEPTagP2V5FbfSLP56z16vLl-VNsnq8vl2er5Jegh2TokTlQFptDWKRplBJCcJ71KX1JAtnvbAejCFTglaEhSidK03qhPalJJyz401vT9FRW01jXRPzfmg-aPjJQaNU1ugpd7LJxX49zw950XXvMQeRrz_M_32IvzetXhU</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering</title><source>Springer Books</source><creator>Ding, Chris ; He, Xiaofeng ; Simon, Horst D.</creator><contributor>Torgo, Luís ; Camacho, Rui ; Gama, João ; Brazdil, Pavel B. ; Jorge, Alípio Mário</contributor><creatorcontrib>Ding, Chris ; He, Xiaofeng ; Simon, Horst D. ; Torgo, Luís ; Camacho, Rui ; Gama, João ; Brazdil, Pavel B. ; Jorge, Alípio Mário</creatorcontrib><description>We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore resolving cluster assignment difficulty in spectral relaxation. We derive a multiplicative updating algorithm to solve the nonnegative relaxation problem. The method is briefly extended to semi-supervised classification and semi-supervised clustering.</description><edition>1ère éd</edition><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540292438</identifier><identifier>ISBN: 9783540292432</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316922</identifier><identifier>EISBN: 9783540316923</identifier><identifier>DOI: 10.1007/11564096_51</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Bipartite Graph ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Nonnegative Matrix Factorization ; Simultaneous Cluster ; Spectral Cluster ; Spectral Relaxation</subject><ispartof>Lecture notes in computer science, 2005, p.530-538</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11564096_51$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11564096_51$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27903,38233,41420,42489</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17324987$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Torgo, Luís</contributor><contributor>Camacho, Rui</contributor><contributor>Gama, João</contributor><contributor>Brazdil, Pavel B.</contributor><contributor>Jorge, Alípio Mário</contributor><creatorcontrib>Ding, Chris</creatorcontrib><creatorcontrib>He, Xiaofeng</creatorcontrib><creatorcontrib>Simon, Horst D.</creatorcontrib><title>Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering</title><title>Lecture notes in computer science</title><description>We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore resolving cluster assignment difficulty in spectral relaxation. We derive a multiplicative updating algorithm to solve the nonnegative relaxation problem. The method is briefly extended to semi-supervised classification and semi-supervised clustering.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bipartite Graph</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Nonnegative Matrix Factorization</subject><subject>Simultaneous Cluster</subject><subject>Spectral Cluster</subject><subject>Spectral Relaxation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540292438</isbn><isbn>9783540292432</isbn><isbn>3540316922</isbn><isbn>9783540316923</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNULlOxDAUNJfEsmzFD7ihoAj4-TmxXaLlFAtIHHX04jhRIDhRHBD8PVktBdOMNDMajYaxIxCnIIQ-A0gzJWyWp7DFDjBVAiGzUm6zGWQACaKyOxtDWqnQ7LKZQCETqxXus0WMb2ICgtEKZuzioQvB1zQ2X56vqB4o1A0F_uRb-p7ULvCu4nfJvacQOYWSP_fejQO1fNl-xtEPTagP2V5FbfSLP56z16vLl-VNsnq8vl2er5Jegh2TokTlQFptDWKRplBJCcJ71KX1JAtnvbAejCFTglaEhSidK03qhPalJJyz401vT9FRW01jXRPzfmg-aPjJQaNU1ugpd7LJxX49zw950XXvMQeRrz_M_32IvzetXhU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ding, Chris</creator><creator>He, Xiaofeng</creator><creator>Simon, Horst D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering</title><author>Ding, Chris ; He, Xiaofeng ; Simon, Horst D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-bd34c12979833b551f2210ee37d9ea2bc9e09e188a8d174a3b0dccd85c07ed2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bipartite Graph</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Nonnegative Matrix Factorization</topic><topic>Simultaneous Cluster</topic><topic>Spectral Cluster</topic><topic>Spectral Relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Chris</creatorcontrib><creatorcontrib>He, Xiaofeng</creatorcontrib><creatorcontrib>Simon, Horst D.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Chris</au><au>He, Xiaofeng</au><au>Simon, Horst D.</au><au>Torgo, Luís</au><au>Camacho, Rui</au><au>Gama, João</au><au>Brazdil, Pavel B.</au><au>Jorge, Alípio Mário</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>530</spage><epage>538</epage><pages>530-538</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540292438</isbn><isbn>9783540292432</isbn><eisbn>3540316922</eisbn><eisbn>9783540316923</eisbn><abstract>We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore resolving cluster assignment difficulty in spectral relaxation. We derive a multiplicative updating algorithm to solve the nonnegative relaxation problem. The method is briefly extended to semi-supervised classification and semi-supervised clustering.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11564096_51</doi><tpages>9</tpages><edition>1ère éd</edition></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.530-538
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17324987
source Springer Books
subjects Applied sciences
Artificial intelligence
Bipartite Graph
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
Nonnegative Matrix Factorization
Simultaneous Cluster
Spectral Cluster
Spectral Relaxation
title Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonnegative%20Lagrangian%20Relaxation%20of%20K-Means%20and%20Spectral%20Clustering&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Ding,%20Chris&rft.date=2005&rft.spage=530&rft.epage=538&rft.pages=530-538&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540292438&rft.isbn_list=9783540292432&rft_id=info:doi/10.1007/11564096_51&rft_dat=%3Cpascalfrancis_sprin%3E17324987%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316922&rft.eisbn_list=9783540316923&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true