Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering
We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore res...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore resolving cluster assignment difficulty in spectral relaxation. We derive a multiplicative updating algorithm to solve the nonnegative relaxation problem. The method is briefly extended to semi-supervised classification and semi-supervised clustering. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11564096_51 |