Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering

We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ding, Chris, He, Xiaofeng, Simon, Horst D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that K-means and spectral clustering objective functions can be written as a trace of quadratic forms. Instead of relaxation by eigenvectors, we propose a novel relaxation maintaining the nonnegativity of the cluster indicators and thus give the cluster posterior probabilities, therefore resolving cluster assignment difficulty in spectral relaxation. We derive a multiplicative updating algorithm to solve the nonnegative relaxation problem. The method is briefly extended to semi-supervised classification and semi-supervised clustering.
ISSN:0302-9743
1611-3349
DOI:10.1007/11564096_51