Efficient implementation of fairness in discrete-event systems using queues
Fair synthesis of supervisory control for discrete-event systems is discussed. It is argued that a least restrictive supervisor does not in general exist unless a bound is placed on the number of transitions before which a desired event is required to happen. It is shown how such bounded fairness ca...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2005-11, Vol.50 (11), p.1845-1849 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fair synthesis of supervisory control for discrete-event systems is discussed. It is argued that a least restrictive supervisor does not in general exist unless a bound is placed on the number of transitions before which a desired event is required to happen. It is shown how such bounded fairness can be implemented using first-input-first-output (FIFO) queues. Although the language generated by a queue is not the largest among bounded fair restrictions of a behavior, nonoptimality can be exploited in hierarchical implementation of queues by grouping a subset of subsystems as a team and designing two modular queues: one to implement fairness locally among the team members, and the other to implement fairness globally between the team and other subsystems. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2005.858658 |