A novel wafer reclaim method for amorphous SiC and carbon doped oxide films

Amorphous SiC (a-SiC) films are the most promising dielectric diffusion barriers to replace silicon nitride in Cu-interconnect technology. However, reclaim of wafers with a-SiC films is a challenge issue for mass production. In this paper, a novel wafer reclaim method is proposed. It is observed tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 2005-11, Vol.18 (4), p.716-721
Hauptverfasser: TSUI, Bing-Yue, FANG, Kuo-Lung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amorphous SiC (a-SiC) films are the most promising dielectric diffusion barriers to replace silicon nitride in Cu-interconnect technology. However, reclaim of wafers with a-SiC films is a challenge issue for mass production. In this paper, a novel wafer reclaim method is proposed. It is observed that a-SiC can be oxidized to SiO/sub 2/ in both dry O/sub 2/ and steam ambients at temperatures as low as 550/spl deg/C. The oxidation mechanism can be described by the Deal-Grove model that is traditionally used to describe oxidation of Si. Experiments prove that the oxidation process is clean and uniform. It is also observed that carbon doped oxide (CDO) films can be oxidized easily, too. Therefore, oxidation followed by HF etching could be a universal process to reclaim wafers deposited with a-SiC or CDO films. Since the oxidation rate of Si substrates at medium temperatures is much lower than that of a-SiC and CDO films, the oxidation process is virtually self-limiting. Compared with a traditional reclaim method based on wafer polishing, this universal oxidation-etching method exhibits great benefits in terms of low cost, high throughput, and the ability to perform nearly unlimited numbers of reclaim cycles.
ISSN:0894-6507
1558-2345
DOI:10.1109/TSM.2005.858501