A Sufficient Condition for Strong Equivalence Under the Well-Founded Semantics
We consider the problem of strong equivalence [1] under the infinite-valued semantics [2] (which is a purely model-theoretic version of the well-founded semantics). We demonstrate that two programs are now strongly equivalent if and only if they are logically equivalent under the infinite-valued log...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of strong equivalence [1] under the infinite-valued semantics [2] (which is a purely model-theoretic version of the well-founded semantics). We demonstrate that two programs are now strongly equivalent if and only if they are logically equivalent under the infinite-valued logic of [2]. In particular, we show that for propositional programs strong equivalence is decidable but coNP-complete. Our results have a direct practical implication for the well-founded semantics since, as we demonstrate, if two programs are strongly equivalent under the infinite-valued semantics, then they are also strongly equivalent under the well-founded semantics. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11562931_35 |