Line Arrangements in H3

If$M = \mathbb{H}^3/G $is a hyperbolic manifold and$\gamma \subset M$is a simple closed geodesic, then γ lifts to a collection of lines in H3acted upon by G. In this paper we show that such a collection of lines cannot contain a particular type of subset (called a bad triple) unless G has orientatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2005-10, Vol.133 (10), p.3115-3120
1. Verfasser: MILLEY, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If$M = \mathbb{H}^3/G $is a hyperbolic manifold and$\gamma \subset M$is a simple closed geodesic, then γ lifts to a collection of lines in H3acted upon by G. In this paper we show that such a collection of lines cannot contain a particular type of subset (called a bad triple) unless G has orientation-reversing elements. This fact allows us to extend certain lower bounds on hyperbolic volume to the non-orient able case.
ISSN:0002-9939
1088-6826