Line Arrangements in H3
If$M = \mathbb{H}^3/G $is a hyperbolic manifold and$\gamma \subset M$is a simple closed geodesic, then γ lifts to a collection of lines in H3acted upon by G. In this paper we show that such a collection of lines cannot contain a particular type of subset (called a bad triple) unless G has orientatio...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2005-10, Vol.133 (10), p.3115-3120 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If$M = \mathbb{H}^3/G $is a hyperbolic manifold and$\gamma \subset M$is a simple closed geodesic, then γ lifts to a collection of lines in H3acted upon by G. In this paper we show that such a collection of lines cannot contain a particular type of subset (called a bad triple) unless G has orientation-reversing elements. This fact allows us to extend certain lower bounds on hyperbolic volume to the non-orient able case. |
---|---|
ISSN: | 0002-9939 1088-6826 |