Anchoring by Imitation Learning in Conceptual Spaces
In order to have a robotic system able to effectively learn by imitation, and not merely reproduce the movements of a human teacher, the system should have the capabilities of deeply understanding the perceived actions to be imitated. This paper deals with the development of a cognitive architecture...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to have a robotic system able to effectively learn by imitation, and not merely reproduce the movements of a human teacher, the system should have the capabilities of deeply understanding the perceived actions to be imitated. This paper deals with the development of a cognitive architecture for learning by imitation in which a rich conceptual representation of the observed actions is built. The purpose of the following discussion is to show how the same conceptual representation can be used both in a bottom-up approach, in order to learn sequences of actions by imitation learning paradigm, and in a top-down approach, in order to anchor the symbolical representations to the perceptual activities of the robotic system. The proposed architecture has been tested on the robotic system composed of a PUMA 200 industrial manipulator and an anthropomorphic robotic hand. The system demonstrated the ability to learn and imitate a set of movement primitives acquired through the vision system for simple manipulative purposes. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11558590_50 |