VA-Files vs. R-Trees in Distance Join Queries

In modern database applications the similarity of complex objects is examined by performing distance-based queries (e.g. nearest neighbour search) on data of high dimensionality. Most multidimensional indexing methods have failed to efficiently support these queries in arbitrary high-dimensional dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Corral, Antonio, D’Ermiliis, Alejandro, Manolopoulos, Yannis, Vassilakopoulos, Michael
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In modern database applications the similarity of complex objects is examined by performing distance-based queries (e.g. nearest neighbour search) on data of high dimensionality. Most multidimensional indexing methods have failed to efficiently support these queries in arbitrary high-dimensional datasets (due to the dimensionality curse). Similarity join queries and K closest pairs queries are the most representative distance join queries, where two high-dimensional datasets are combined. These queries are very expensive in terms of response time and I/O activity in case of high-dimensional spaces. On the other hand, the filtering-based approach, as applied by the VA-file, has turned out to be a very promising alternative for nearest neighbour search. In general, the filtering-based approach represents vectors as compact approximations, whereas by first scanning these approximations, only a small fraction of the real vectors is visited. Here, we elaborate on VA-files and develop VA-file based algorithms for answering similarity join and K closest pairs queries on high-dimensional data. Also, performance-wise we compare the use of VA-files and R*-trees (a structure that has been proven to be of robust nature) for answering these queries. The results of the comparison do not lead to a clear winner.
ISSN:0302-9743
1611-3349
DOI:10.1007/11547686_12