Minimum-Length Polygons of First-Class Simple Cube-Curves

We consider simple cube-curves in the orthogonal 3D grid. The union of all cells contained in such a curve (also called the tube of this curve) is a polyhedrally bounded set. The curve’s length is defined to be that of the minimum-length polygonal curve (MLP) fully contained and complete in the tube...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Fajie, Klette, Reinhard
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue
container_start_page 321
container_title
container_volume
creator Li, Fajie
Klette, Reinhard
description We consider simple cube-curves in the orthogonal 3D grid. The union of all cells contained in such a curve (also called the tube of this curve) is a polyhedrally bounded set. The curve’s length is defined to be that of the minimum-length polygonal curve (MLP) fully contained and complete in the tube of the curve. So far only one general algorithm called rubber-band algorithm was known for the approximative calculation of such an MLP. A proof that this algorithm always converges to the correct curve, is still an open problem. This paper proves that the rubber-band algorithm is correct for the family of first-class simple cube-curves.
doi_str_mv 10.1007/11556121_40
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17182634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17182634</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-71dca338363b42aa636a347ebb4450d9991bb815ee39eb579f8a2fbcd32cde3c3</originalsourceid><addsrcrecordid>eNpNkDtPwzAURs1LopRO_IEsDAwGX1_Hzh1R1AJSEUjAbNmJUwJ5KW6R-u8pKkJM33COvuEwdgHiGoQwNwBpqkGCVeKAzchkmCqBUgDAIZuABuCIio7-mMxIkzxmE4FCcjIKT9lZjB9CCGlIThg91l3dblq-DN1q_Z4898121Xcx6atkUY9xzfPGxZi81O3QhCTf-MDzzfgV4jk7qVwTw-x3p-xtMX_N7_ny6e4hv13yQQKtuYGycIgZavRKOqdRO1QmeK9UKkoiAu8zSENACj41VGVOVr4oURZlwAKn7HL_O7hYuKYaXVfU0Q5j3bpxa8FAJjWqnXe19-IOdaswWt_3n9GCsD_t7L92-A1IdlqQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Minimum-Length Polygons of First-Class Simple Cube-Curves</title><source>Springer Books</source><creator>Li, Fajie ; Klette, Reinhard</creator><contributor>Philips, Wilfried ; Gagalowicz, André</contributor><creatorcontrib>Li, Fajie ; Klette, Reinhard ; Philips, Wilfried ; Gagalowicz, André</creatorcontrib><description>We consider simple cube-curves in the orthogonal 3D grid. The union of all cells contained in such a curve (also called the tube of this curve) is a polyhedrally bounded set. The curve’s length is defined to be that of the minimum-length polygonal curve (MLP) fully contained and complete in the tube of the curve. So far only one general algorithm called rubber-band algorithm was known for the approximative calculation of such an MLP. A proof that this algorithm always converges to the correct curve, is still an open problem. This paper proves that the rubber-band algorithm is correct for the family of first-class simple cube-curves.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540289692</identifier><identifier>ISBN: 3540289690</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540320111</identifier><identifier>EISBN: 3540320113</identifier><identifier>DOI: 10.1007/11556121_40</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Critical Line ; Exact sciences and technology ; Motion Planning Problem ; Pattern recognition. Digital image processing. Computational geometry ; Polygonal Curve ; Robot Motion Planning ; Usual Topology</subject><ispartof>Computer Analysis of Images and Patterns, 2005, p.321-329</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11556121_40$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11556121_40$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17182634$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Philips, Wilfried</contributor><contributor>Gagalowicz, André</contributor><creatorcontrib>Li, Fajie</creatorcontrib><creatorcontrib>Klette, Reinhard</creatorcontrib><title>Minimum-Length Polygons of First-Class Simple Cube-Curves</title><title>Computer Analysis of Images and Patterns</title><description>We consider simple cube-curves in the orthogonal 3D grid. The union of all cells contained in such a curve (also called the tube of this curve) is a polyhedrally bounded set. The curve’s length is defined to be that of the minimum-length polygonal curve (MLP) fully contained and complete in the tube of the curve. So far only one general algorithm called rubber-band algorithm was known for the approximative calculation of such an MLP. A proof that this algorithm always converges to the correct curve, is still an open problem. This paper proves that the rubber-band algorithm is correct for the family of first-class simple cube-curves.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Critical Line</subject><subject>Exact sciences and technology</subject><subject>Motion Planning Problem</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Polygonal Curve</subject><subject>Robot Motion Planning</subject><subject>Usual Topology</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540289692</isbn><isbn>3540289690</isbn><isbn>9783540320111</isbn><isbn>3540320113</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPwzAURs1LopRO_IEsDAwGX1_Hzh1R1AJSEUjAbNmJUwJ5KW6R-u8pKkJM33COvuEwdgHiGoQwNwBpqkGCVeKAzchkmCqBUgDAIZuABuCIio7-mMxIkzxmE4FCcjIKT9lZjB9CCGlIThg91l3dblq-DN1q_Z4898121Xcx6atkUY9xzfPGxZi81O3QhCTf-MDzzfgV4jk7qVwTw-x3p-xtMX_N7_ny6e4hv13yQQKtuYGycIgZavRKOqdRO1QmeK9UKkoiAu8zSENACj41VGVOVr4oURZlwAKn7HL_O7hYuKYaXVfU0Q5j3bpxa8FAJjWqnXe19-IOdaswWt_3n9GCsD_t7L92-A1IdlqQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Li, Fajie</creator><creator>Klette, Reinhard</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Minimum-Length Polygons of First-Class Simple Cube-Curves</title><author>Li, Fajie ; Klette, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-71dca338363b42aa636a347ebb4450d9991bb815ee39eb579f8a2fbcd32cde3c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Critical Line</topic><topic>Exact sciences and technology</topic><topic>Motion Planning Problem</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Polygonal Curve</topic><topic>Robot Motion Planning</topic><topic>Usual Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fajie</creatorcontrib><creatorcontrib>Klette, Reinhard</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fajie</au><au>Klette, Reinhard</au><au>Philips, Wilfried</au><au>Gagalowicz, André</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Minimum-Length Polygons of First-Class Simple Cube-Curves</atitle><btitle>Computer Analysis of Images and Patterns</btitle><date>2005</date><risdate>2005</risdate><spage>321</spage><epage>329</epage><pages>321-329</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540289692</isbn><isbn>3540289690</isbn><eisbn>9783540320111</eisbn><eisbn>3540320113</eisbn><abstract>We consider simple cube-curves in the orthogonal 3D grid. The union of all cells contained in such a curve (also called the tube of this curve) is a polyhedrally bounded set. The curve’s length is defined to be that of the minimum-length polygonal curve (MLP) fully contained and complete in the tube of the curve. So far only one general algorithm called rubber-band algorithm was known for the approximative calculation of such an MLP. A proof that this algorithm always converges to the correct curve, is still an open problem. This paper proves that the rubber-band algorithm is correct for the family of first-class simple cube-curves.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11556121_40</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Analysis of Images and Patterns, 2005, p.321-329
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17182634
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Critical Line
Exact sciences and technology
Motion Planning Problem
Pattern recognition. Digital image processing. Computational geometry
Polygonal Curve
Robot Motion Planning
Usual Topology
title Minimum-Length Polygons of First-Class Simple Cube-Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Minimum-Length%20Polygons%20of%20First-Class%20Simple%20Cube-Curves&rft.btitle=Computer%20Analysis%20of%20Images%20and%20Patterns&rft.au=Li,%20Fajie&rft.date=2005&rft.spage=321&rft.epage=329&rft.pages=321-329&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540289692&rft.isbn_list=3540289690&rft_id=info:doi/10.1007/11556121_40&rft_dat=%3Cpascalfrancis_sprin%3E17182634%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540320111&rft.eisbn_list=3540320113&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true