Minimum-Length Polygons of First-Class Simple Cube-Curves

We consider simple cube-curves in the orthogonal 3D grid. The union of all cells contained in such a curve (also called the tube of this curve) is a polyhedrally bounded set. The curve’s length is defined to be that of the minimum-length polygonal curve (MLP) fully contained and complete in the tube...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Fajie, Klette, Reinhard
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider simple cube-curves in the orthogonal 3D grid. The union of all cells contained in such a curve (also called the tube of this curve) is a polyhedrally bounded set. The curve’s length is defined to be that of the minimum-length polygonal curve (MLP) fully contained and complete in the tube of the curve. So far only one general algorithm called rubber-band algorithm was known for the approximative calculation of such an MLP. A proof that this algorithm always converges to the correct curve, is still an open problem. This paper proves that the rubber-band algorithm is correct for the family of first-class simple cube-curves.
ISSN:0302-9743
1611-3349
DOI:10.1007/11556121_40