Face Recognition – Combine Generic and Specific Solutions

In many realistic face recognition applications, such as surveillance photo identification, the subjects of interest usually have only a limited number of image samples a-priori. This makes the recognition a difficult task, especially when only one image sample is available for each subject. In such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Jie, Lu, Juwei, Plataniotis, K. N., Venetsanopoulos, A. N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many realistic face recognition applications, such as surveillance photo identification, the subjects of interest usually have only a limited number of image samples a-priori. This makes the recognition a difficult task, especially when only one image sample is available for each subject. In such a case, the performance of many well known face recognition algorithms will deteriorate rapidly and some of the algorithms even fail to apply. In this paper, we introduced a novel scheme to solve the one training sample problem by combining a specific solution learned from the samples of interested subjects and a generic solution learned from the samples of many other subjects. A multi-learner framework is firstly applied to generate and combine a set of generic base learners followed by a second combination with the specific learner. Extensive experiments based on the FERET database suggests that in the scenario considered here, the proposed solution significantly boosts the recognition performance.
ISSN:0302-9743
1611-3349
DOI:10.1007/11559573_128