Protecting Online Rating Systems from Unfair Ratings

Online rating systems have been widely adopted by online trading communities to ban “bad” service providers and prompt them to provide “good” services. However, the performance of the online rating systems is easily compromised by various unfair ratings, e.g. balloting, badmouthing, and complementar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weng, Jianshu, Miao, Chunyan, Goh, Angela
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 50
container_title
container_volume
creator Weng, Jianshu
Miao, Chunyan
Goh, Angela
description Online rating systems have been widely adopted by online trading communities to ban “bad” service providers and prompt them to provide “good” services. However, the performance of the online rating systems is easily compromised by various unfair ratings, e.g. balloting, badmouthing, and complementary unfair ratings. How to mitigate the influence of the unfair ratings remains an important issue in online rating systems. In this paper, we propose a novel entropy-based method to measure the rating quality as well as to screen the unfair ratings. Experimental results show that the proposed method is both effective and practical in alleviating the influence of different types of unfair ratings.
doi_str_mv 10.1007/11537878_6
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17136164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17136164</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-2625edd992120ac642ea0883e3f348988bdd5798d3094af55e4a9cea2ccc86d33</originalsourceid><addsrcrecordid>eNpFkEtLAzEUheMLHGs3_oLZCG5Gc3PzuFlK8QWFitp1SDOZMtrOlGQ2_fe2tuDZHA7f4SwOYzfA74Fz8wCg0JAhp0_Y2BpCJTmCsZpOWQEaoEKU9oxd7YEgIaQ-ZwVHLiprJF6ycc7ffCcUXIEumHxP_RDD0HbLctat2i6WH_4vfW7zENe5bFK_Ludd49t0RPmaXTR-leP46CM2f376mrxW09nL2-RxWm0E0FAJLVSsa2sFCO6DliJ6ToQRG5RkiRZ1rYylGrmVvlEqSm9D9CKEQLpGHLHbw-7G5-BXTfJdaLPbpHbt09aBAdSg5a53d-jlHeqWMblF3_9kB9ztX3P_r-Ev1GhYZQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Protecting Online Rating Systems from Unfair Ratings</title><source>Springer Books</source><creator>Weng, Jianshu ; Miao, Chunyan ; Goh, Angela</creator><contributor>Pernul, Günther ; Katsikas, Sokratis ; López, Javier</contributor><creatorcontrib>Weng, Jianshu ; Miao, Chunyan ; Goh, Angela ; Pernul, Günther ; Katsikas, Sokratis ; López, Javier</creatorcontrib><description>Online rating systems have been widely adopted by online trading communities to ban “bad” service providers and prompt them to provide “good” services. However, the performance of the online rating systems is easily compromised by various unfair ratings, e.g. balloting, badmouthing, and complementary unfair ratings. How to mitigate the influence of the unfair ratings remains an important issue in online rating systems. In this paper, we propose a novel entropy-based method to measure the rating quality as well as to screen the unfair ratings. Experimental results show that the proposed method is both effective and practical in alleviating the influence of different types of unfair ratings.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540282246</identifier><identifier>ISBN: 9783540282242</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540317968</identifier><identifier>EISBN: 3540317961</identifier><identifier>DOI: 10.1007/11537878_6</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Beta Distribution ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Local Rating ; Majority Opinion ; Mean Square Error ; Memory and file management (including protection and security) ; Memory organisation. Data processing ; Rating System ; Software</subject><ispartof>Lecture notes in computer science, 2005, p.50-59</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11537878_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11537878_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17136164$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Pernul, Günther</contributor><contributor>Katsikas, Sokratis</contributor><contributor>López, Javier</contributor><creatorcontrib>Weng, Jianshu</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><creatorcontrib>Goh, Angela</creatorcontrib><title>Protecting Online Rating Systems from Unfair Ratings</title><title>Lecture notes in computer science</title><description>Online rating systems have been widely adopted by online trading communities to ban “bad” service providers and prompt them to provide “good” services. However, the performance of the online rating systems is easily compromised by various unfair ratings, e.g. balloting, badmouthing, and complementary unfair ratings. How to mitigate the influence of the unfair ratings remains an important issue in online rating systems. In this paper, we propose a novel entropy-based method to measure the rating quality as well as to screen the unfair ratings. Experimental results show that the proposed method is both effective and practical in alleviating the influence of different types of unfair ratings.</description><subject>Applied sciences</subject><subject>Beta Distribution</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Local Rating</subject><subject>Majority Opinion</subject><subject>Mean Square Error</subject><subject>Memory and file management (including protection and security)</subject><subject>Memory organisation. Data processing</subject><subject>Rating System</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540282246</isbn><isbn>9783540282242</isbn><isbn>9783540317968</isbn><isbn>3540317961</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtLAzEUheMLHGs3_oLZCG5Gc3PzuFlK8QWFitp1SDOZMtrOlGQ2_fe2tuDZHA7f4SwOYzfA74Fz8wCg0JAhp0_Y2BpCJTmCsZpOWQEaoEKU9oxd7YEgIaQ-ZwVHLiprJF6ycc7ffCcUXIEumHxP_RDD0HbLctat2i6WH_4vfW7zENe5bFK_Ludd49t0RPmaXTR-leP46CM2f376mrxW09nL2-RxWm0E0FAJLVSsa2sFCO6DliJ6ToQRG5RkiRZ1rYylGrmVvlEqSm9D9CKEQLpGHLHbw-7G5-BXTfJdaLPbpHbt09aBAdSg5a53d-jlHeqWMblF3_9kB9ztX3P_r-Ev1GhYZQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Weng, Jianshu</creator><creator>Miao, Chunyan</creator><creator>Goh, Angela</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Protecting Online Rating Systems from Unfair Ratings</title><author>Weng, Jianshu ; Miao, Chunyan ; Goh, Angela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-2625edd992120ac642ea0883e3f348988bdd5798d3094af55e4a9cea2ccc86d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Beta Distribution</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Local Rating</topic><topic>Majority Opinion</topic><topic>Mean Square Error</topic><topic>Memory and file management (including protection and security)</topic><topic>Memory organisation. Data processing</topic><topic>Rating System</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Jianshu</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><creatorcontrib>Goh, Angela</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Jianshu</au><au>Miao, Chunyan</au><au>Goh, Angela</au><au>Pernul, Günther</au><au>Katsikas, Sokratis</au><au>López, Javier</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Protecting Online Rating Systems from Unfair Ratings</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>50</spage><epage>59</epage><pages>50-59</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540282246</isbn><isbn>9783540282242</isbn><eisbn>9783540317968</eisbn><eisbn>3540317961</eisbn><abstract>Online rating systems have been widely adopted by online trading communities to ban “bad” service providers and prompt them to provide “good” services. However, the performance of the online rating systems is easily compromised by various unfair ratings, e.g. balloting, badmouthing, and complementary unfair ratings. How to mitigate the influence of the unfair ratings remains an important issue in online rating systems. In this paper, we propose a novel entropy-based method to measure the rating quality as well as to screen the unfair ratings. Experimental results show that the proposed method is both effective and practical in alleviating the influence of different types of unfair ratings.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11537878_6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.50-59
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17136164
source Springer Books
subjects Applied sciences
Beta Distribution
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Local Rating
Majority Opinion
Mean Square Error
Memory and file management (including protection and security)
Memory organisation. Data processing
Rating System
Software
title Protecting Online Rating Systems from Unfair Ratings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Protecting%20Online%20Rating%20Systems%20from%20Unfair%20Ratings&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Weng,%20Jianshu&rft.date=2005&rft.spage=50&rft.epage=59&rft.pages=50-59&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540282246&rft.isbn_list=9783540282242&rft_id=info:doi/10.1007/11537878_6&rft_dat=%3Cpascalfrancis_sprin%3E17136164%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540317968&rft.eisbn_list=3540317961&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true