Protecting Online Rating Systems from Unfair Ratings

Online rating systems have been widely adopted by online trading communities to ban “bad” service providers and prompt them to provide “good” services. However, the performance of the online rating systems is easily compromised by various unfair ratings, e.g. balloting, badmouthing, and complementar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weng, Jianshu, Miao, Chunyan, Goh, Angela
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Online rating systems have been widely adopted by online trading communities to ban “bad” service providers and prompt them to provide “good” services. However, the performance of the online rating systems is easily compromised by various unfair ratings, e.g. balloting, badmouthing, and complementary unfair ratings. How to mitigate the influence of the unfair ratings remains an important issue in online rating systems. In this paper, we propose a novel entropy-based method to measure the rating quality as well as to screen the unfair ratings. Experimental results show that the proposed method is both effective and practical in alleviating the influence of different types of unfair ratings.
ISSN:0302-9743
1611-3349
DOI:10.1007/11537878_6