Improving Nearest Neighbor Classification with Simulated Gravitational Collapse

The performance of the Nearest Neighbor classifier drops significantly with the increase of the overlapping of the distribution of different classes. To overcome this drawback, we propose to simulate the physical process of gravitational collapse to trim the boundaries of the distribution of each cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Chen, Chen, Yan Qiu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of the Nearest Neighbor classifier drops significantly with the increase of the overlapping of the distribution of different classes. To overcome this drawback, we propose to simulate the physical process of gravitational collapse to trim the boundaries of the distribution of each class to reduce overlapping. The proposed simulated gravitational collapse(SGC) algorithm is tested on 7 real-world data sets. Experimental results show that the nearest prototype classifier based on SGC outperforms conventional NN and k-NN classifiers.
ISSN:0302-9743
1611-3349
DOI:10.1007/11539902_104