Applying the Clonal Selection Principle to Find Flexible Job-Shop Schedules

We apply the Clonal Selection principle of the human immune system to solve the Flexible Job-Shop Problem with recirculation. Various practical design issues are addressed in the implemented algorithm, ClonaFLEX; first, an efficient antibody representation which creates only feasible solutions and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ong, Z. X., Tay, J. C., Kwoh, C. K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue
container_start_page 442
container_title
container_volume
creator Ong, Z. X.
Tay, J. C.
Kwoh, C. K.
description We apply the Clonal Selection principle of the human immune system to solve the Flexible Job-Shop Problem with recirculation. Various practical design issues are addressed in the implemented algorithm, ClonaFLEX; first, an efficient antibody representation which creates only feasible solutions and a bootstrapping antibody initialization method to reduce the search time required. Second, the assignment of suitable mutation rates for antibodies based on their affinity. To this end, a simple yet effective visual method of determining the optimal mutation value is proposed. And third, to prevent premature convergence, a novel way of using elite pools to incubate antibodies is presented. Performance results of ClonaFLEX are obtained against benchmark FJSP instances by Kacem and Brandimarte. On average, ClonaFLEX outperforms a cultural evolutionary algorithm (EA) in 7 out of 12 problem sets, equivalent results for 4 and poorer in 1.
doi_str_mv 10.1007/11536444_34
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17116070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17116070</sourcerecordid><originalsourceid>FETCH-LOGICAL-j285t-af26af9f8f0c187ae874f09dc87d8e50510353460033c078f6696f072aac9bc73</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1LopSe-AO-cOAQ2I2fOVYV4VUJpMI5chy7TTFJFAeJ_ntSlQNzWWlmtPo0hFwh3CKAukMUTHLOC8aPyCxTmgkODLUScEwmKBETxnh2Qi72QapRCX5KJsAgTTLF2TmZxbiFUQwl4-mEvMy7LuzqZk2HjaOL0DYm0JULzg5129C3vm5s3QVHh5bmdVPRPLifuhyN57ZMVpu2oyu7cdV3cPGSnHkTopv93Sn5yO_fF4_J8vXhaTFfJttUiyExPpXGZ157sCO6cVpxD1lltaq0EyAQmGBcjpDMgtJeykx6UKkxNiutYlNyffjbmWhN8L0ZGWPR9fWX6XcFKkQJCsbezaEXx6hZu74o2_YzFgjFfs3i35rsF5QWYCE</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying the Clonal Selection Principle to Find Flexible Job-Shop Schedules</title><source>Springer Books</source><creator>Ong, Z. X. ; Tay, J. C. ; Kwoh, C. K.</creator><contributor>Timmis, Jonathan I. ; Bentley, Peter J. ; Jacob, Christian ; Pilat, Marcin L.</contributor><creatorcontrib>Ong, Z. X. ; Tay, J. C. ; Kwoh, C. K. ; Timmis, Jonathan I. ; Bentley, Peter J. ; Jacob, Christian ; Pilat, Marcin L.</creatorcontrib><description>We apply the Clonal Selection principle of the human immune system to solve the Flexible Job-Shop Problem with recirculation. Various practical design issues are addressed in the implemented algorithm, ClonaFLEX; first, an efficient antibody representation which creates only feasible solutions and a bootstrapping antibody initialization method to reduce the search time required. Second, the assignment of suitable mutation rates for antibodies based on their affinity. To this end, a simple yet effective visual method of determining the optimal mutation value is proposed. And third, to prevent premature convergence, a novel way of using elite pools to incubate antibodies is presented. Performance results of ClonaFLEX are obtained against benchmark FJSP instances by Kacem and Brandimarte. On average, ClonaFLEX outperforms a cultural evolutionary algorithm (EA) in 7 out of 12 problem sets, equivalent results for 4 and poorer in 1.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540281754</identifier><identifier>ISBN: 9783540281757</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318750</identifier><identifier>EISBN: 3540318755</identifier><identifier>DOI: 10.1007/11536444_34</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Clonal Selection ; Computer science; control theory; systems ; Exact sciences and technology ; Flexible Job-Shop Scheduling Problem ; Immune Algorithm ; Optimization</subject><ispartof>Artificial Immune Systems, 2005, p.442-455</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11536444_34$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11536444_34$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17116070$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Timmis, Jonathan I.</contributor><contributor>Bentley, Peter J.</contributor><contributor>Jacob, Christian</contributor><contributor>Pilat, Marcin L.</contributor><creatorcontrib>Ong, Z. X.</creatorcontrib><creatorcontrib>Tay, J. C.</creatorcontrib><creatorcontrib>Kwoh, C. K.</creatorcontrib><title>Applying the Clonal Selection Principle to Find Flexible Job-Shop Schedules</title><title>Artificial Immune Systems</title><description>We apply the Clonal Selection principle of the human immune system to solve the Flexible Job-Shop Problem with recirculation. Various practical design issues are addressed in the implemented algorithm, ClonaFLEX; first, an efficient antibody representation which creates only feasible solutions and a bootstrapping antibody initialization method to reduce the search time required. Second, the assignment of suitable mutation rates for antibodies based on their affinity. To this end, a simple yet effective visual method of determining the optimal mutation value is proposed. And third, to prevent premature convergence, a novel way of using elite pools to incubate antibodies is presented. Performance results of ClonaFLEX are obtained against benchmark FJSP instances by Kacem and Brandimarte. On average, ClonaFLEX outperforms a cultural evolutionary algorithm (EA) in 7 out of 12 problem sets, equivalent results for 4 and poorer in 1.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clonal Selection</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Flexible Job-Shop Scheduling Problem</subject><subject>Immune Algorithm</subject><subject>Optimization</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540281754</isbn><isbn>9783540281757</isbn><isbn>9783540318750</isbn><isbn>3540318755</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtPwzAQhM1LopSe-AO-cOAQ2I2fOVYV4VUJpMI5chy7TTFJFAeJ_ntSlQNzWWlmtPo0hFwh3CKAukMUTHLOC8aPyCxTmgkODLUScEwmKBETxnh2Qi72QapRCX5KJsAgTTLF2TmZxbiFUQwl4-mEvMy7LuzqZk2HjaOL0DYm0JULzg5129C3vm5s3QVHh5bmdVPRPLifuhyN57ZMVpu2oyu7cdV3cPGSnHkTopv93Sn5yO_fF4_J8vXhaTFfJttUiyExPpXGZ157sCO6cVpxD1lltaq0EyAQmGBcjpDMgtJeykx6UKkxNiutYlNyffjbmWhN8L0ZGWPR9fWX6XcFKkQJCsbezaEXx6hZu74o2_YzFgjFfs3i35rsF5QWYCE</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ong, Z. X.</creator><creator>Tay, J. C.</creator><creator>Kwoh, C. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Applying the Clonal Selection Principle to Find Flexible Job-Shop Schedules</title><author>Ong, Z. X. ; Tay, J. C. ; Kwoh, C. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j285t-af26af9f8f0c187ae874f09dc87d8e50510353460033c078f6696f072aac9bc73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clonal Selection</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Flexible Job-Shop Scheduling Problem</topic><topic>Immune Algorithm</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Z. X.</creatorcontrib><creatorcontrib>Tay, J. C.</creatorcontrib><creatorcontrib>Kwoh, C. K.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, Z. X.</au><au>Tay, J. C.</au><au>Kwoh, C. K.</au><au>Timmis, Jonathan I.</au><au>Bentley, Peter J.</au><au>Jacob, Christian</au><au>Pilat, Marcin L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying the Clonal Selection Principle to Find Flexible Job-Shop Schedules</atitle><btitle>Artificial Immune Systems</btitle><date>2005</date><risdate>2005</risdate><spage>442</spage><epage>455</epage><pages>442-455</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540281754</isbn><isbn>9783540281757</isbn><eisbn>9783540318750</eisbn><eisbn>3540318755</eisbn><abstract>We apply the Clonal Selection principle of the human immune system to solve the Flexible Job-Shop Problem with recirculation. Various practical design issues are addressed in the implemented algorithm, ClonaFLEX; first, an efficient antibody representation which creates only feasible solutions and a bootstrapping antibody initialization method to reduce the search time required. Second, the assignment of suitable mutation rates for antibodies based on their affinity. To this end, a simple yet effective visual method of determining the optimal mutation value is proposed. And third, to prevent premature convergence, a novel way of using elite pools to incubate antibodies is presented. Performance results of ClonaFLEX are obtained against benchmark FJSP instances by Kacem and Brandimarte. On average, ClonaFLEX outperforms a cultural evolutionary algorithm (EA) in 7 out of 12 problem sets, equivalent results for 4 and poorer in 1.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11536444_34</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Immune Systems, 2005, p.442-455
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17116070
source Springer Books
subjects Applied sciences
Artificial intelligence
Clonal Selection
Computer science
control theory
systems
Exact sciences and technology
Flexible Job-Shop Scheduling Problem
Immune Algorithm
Optimization
title Applying the Clonal Selection Principle to Find Flexible Job-Shop Schedules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20the%20Clonal%20Selection%20Principle%20to%20Find%20Flexible%20Job-Shop%20Schedules&rft.btitle=Artificial%20Immune%20Systems&rft.au=Ong,%20Z.%20X.&rft.date=2005&rft.spage=442&rft.epage=455&rft.pages=442-455&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540281754&rft.isbn_list=9783540281757&rft_id=info:doi/10.1007/11536444_34&rft_dat=%3Cpascalfrancis_sprin%3E17116070%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318750&rft.eisbn_list=3540318755&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true