Applying the Clonal Selection Principle to Find Flexible Job-Shop Schedules

We apply the Clonal Selection principle of the human immune system to solve the Flexible Job-Shop Problem with recirculation. Various practical design issues are addressed in the implemented algorithm, ClonaFLEX; first, an efficient antibody representation which creates only feasible solutions and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ong, Z. X., Tay, J. C., Kwoh, C. K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply the Clonal Selection principle of the human immune system to solve the Flexible Job-Shop Problem with recirculation. Various practical design issues are addressed in the implemented algorithm, ClonaFLEX; first, an efficient antibody representation which creates only feasible solutions and a bootstrapping antibody initialization method to reduce the search time required. Second, the assignment of suitable mutation rates for antibodies based on their affinity. To this end, a simple yet effective visual method of determining the optimal mutation value is proposed. And third, to prevent premature convergence, a novel way of using elite pools to incubate antibodies is presented. Performance results of ClonaFLEX are obtained against benchmark FJSP instances by Kacem and Brandimarte. On average, ClonaFLEX outperforms a cultural evolutionary algorithm (EA) in 7 out of 12 problem sets, equivalent results for 4 and poorer in 1.
ISSN:0302-9743
1611-3349
DOI:10.1007/11536444_34