Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems

We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bläser, Markus, Ram, L. Shankar, Sviridenko, Maxim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue
container_start_page 350
container_title
container_volume
creator Bläser, Markus
Ram, L. Shankar
Sviridenko, Maxim
description We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum weight Hamiltonian tour of G. We present a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{31}{40}$\end{document}-approximation algorithm for Δ-Max-ATSP with polynomial running time. Max-3-DCC is the following problem: Given an edge-weighted complete loopless directed graph, compute a spanning collection of node-disjoint cycles, each of length at least three, whose weight is maximum among all such collections. We present a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{4}$\end{document}-approximation algorithm for this problem with polynomial running time. In both cases, we improve on the previous best approximation performances. The results are obtained via a new decomposition technique for the fractional solution of an LP formulation of Max-3-DCC.
doi_str_mv 10.1007/11534273_31
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17116059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17116059</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-ce23086b62c9cd4840019095e77f15151d7dc5d61f579351be1ebd587c4d83143</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1Loi098Qd84cAhsBvbcXyMIh6VWlGJckOKEtspgbxkB0T_PamKENrDrnY-jTRDyCXCDQLIW0TBeChZxvCIzJWMmeDAUCLiMZlghBgwxtUJme6FMEZAOCUTYBAGSnJ2TqbevwNAKFU4Ia-LpnfdlzU06cfju2ryoepamtTbzlXDW-Np2Tm6soOrNF3lI_DZ0GTzvKZ5a_4eLEh3urY0Ha0cXbuuqG3jL8hZmdfezn_3jLzc323Sx2D59LBIk2XQh6iGQNuQQRwVUaiVNjzmAKhACStliWIcI40WJsJSSMUEFhZtYUQsNTcxQ85m5Org2-de53Xp8lZXPuvdmMbtsn05EQg1ctcHzo9Su7UuK7ruw2cI2b7b7F-37Ac6hGVT</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems</title><source>Springer Books</source><creator>Bläser, Markus ; Ram, L. Shankar ; Sviridenko, Maxim</creator><contributor>Dehne, Frank ; Sack, Jörg-Rüdiger ; López-Ortiz, Alejandro</contributor><creatorcontrib>Bläser, Markus ; Ram, L. Shankar ; Sviridenko, Maxim ; Dehne, Frank ; Sack, Jörg-Rüdiger ; López-Ortiz, Alejandro</creatorcontrib><description>We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum weight Hamiltonian tour of G. We present a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{31}{40}$\end{document}-approximation algorithm for Δ-Max-ATSP with polynomial running time. Max-3-DCC is the following problem: Given an edge-weighted complete loopless directed graph, compute a spanning collection of node-disjoint cycles, each of length at least three, whose weight is maximum among all such collections. We present a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{4}$\end{document}-approximation algorithm for this problem with polynomial running time. In both cases, we improve on the previous best approximation performances. The results are obtained via a new decomposition technique for the fractional solution of an LP formulation of Max-3-DCC.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540281010</identifier><identifier>ISBN: 9783540281016</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540317111</identifier><identifier>EISBN: 3540317112</identifier><identifier>DOI: 10.1007/11534273_31</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation Algorithm ; Computer science; control theory; systems ; Exact sciences and technology ; Fractional Solution ; Maximum Weight ; Theoretical computing ; Travel Salesman Problem ; Triangle Inequality</subject><ispartof>Algorithms and Data Structures, 2005, p.350-359</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11534273_31$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11534273_31$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17116059$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Dehne, Frank</contributor><contributor>Sack, Jörg-Rüdiger</contributor><contributor>López-Ortiz, Alejandro</contributor><creatorcontrib>Bläser, Markus</creatorcontrib><creatorcontrib>Ram, L. Shankar</creatorcontrib><creatorcontrib>Sviridenko, Maxim</creatorcontrib><title>Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems</title><title>Algorithms and Data Structures</title><description>We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum weight Hamiltonian tour of G. We present a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{31}{40}$\end{document}-approximation algorithm for Δ-Max-ATSP with polynomial running time. Max-3-DCC is the following problem: Given an edge-weighted complete loopless directed graph, compute a spanning collection of node-disjoint cycles, each of length at least three, whose weight is maximum among all such collections. We present a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{4}$\end{document}-approximation algorithm for this problem with polynomial running time. In both cases, we improve on the previous best approximation performances. The results are obtained via a new decomposition technique for the fractional solution of an LP formulation of Max-3-DCC.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation Algorithm</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fractional Solution</subject><subject>Maximum Weight</subject><subject>Theoretical computing</subject><subject>Travel Salesman Problem</subject><subject>Triangle Inequality</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540281010</isbn><isbn>9783540281016</isbn><isbn>9783540317111</isbn><isbn>3540317112</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtPwzAQhM1Loi098Qd84cAhsBvbcXyMIh6VWlGJckOKEtspgbxkB0T_PamKENrDrnY-jTRDyCXCDQLIW0TBeChZxvCIzJWMmeDAUCLiMZlghBgwxtUJme6FMEZAOCUTYBAGSnJ2TqbevwNAKFU4Ia-LpnfdlzU06cfju2ryoepamtTbzlXDW-Np2Tm6soOrNF3lI_DZ0GTzvKZ5a_4eLEh3urY0Ha0cXbuuqG3jL8hZmdfezn_3jLzc323Sx2D59LBIk2XQh6iGQNuQQRwVUaiVNjzmAKhACStliWIcI40WJsJSSMUEFhZtYUQsNTcxQ85m5Org2-de53Xp8lZXPuvdmMbtsn05EQg1ctcHzo9Su7UuK7ruw2cI2b7b7F-37Ac6hGVT</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Bläser, Markus</creator><creator>Ram, L. Shankar</creator><creator>Sviridenko, Maxim</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems</title><author>Bläser, Markus ; Ram, L. Shankar ; Sviridenko, Maxim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-ce23086b62c9cd4840019095e77f15151d7dc5d61f579351be1ebd587c4d83143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation Algorithm</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fractional Solution</topic><topic>Maximum Weight</topic><topic>Theoretical computing</topic><topic>Travel Salesman Problem</topic><topic>Triangle Inequality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bläser, Markus</creatorcontrib><creatorcontrib>Ram, L. Shankar</creatorcontrib><creatorcontrib>Sviridenko, Maxim</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bläser, Markus</au><au>Ram, L. Shankar</au><au>Sviridenko, Maxim</au><au>Dehne, Frank</au><au>Sack, Jörg-Rüdiger</au><au>López-Ortiz, Alejandro</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems</atitle><btitle>Algorithms and Data Structures</btitle><date>2005</date><risdate>2005</risdate><spage>350</spage><epage>359</epage><pages>350-359</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540281010</isbn><isbn>9783540281016</isbn><eisbn>9783540317111</eisbn><eisbn>3540317112</eisbn><abstract>We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum weight Hamiltonian tour of G. We present a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{31}{40}$\end{document}-approximation algorithm for Δ-Max-ATSP with polynomial running time. Max-3-DCC is the following problem: Given an edge-weighted complete loopless directed graph, compute a spanning collection of node-disjoint cycles, each of length at least three, whose weight is maximum among all such collections. We present a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{4}$\end{document}-approximation algorithm for this problem with polynomial running time. In both cases, we improve on the previous best approximation performances. The results are obtained via a new decomposition technique for the fractional solution of an LP formulation of Max-3-DCC.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11534273_31</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Algorithms and Data Structures, 2005, p.350-359
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17116059
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximation Algorithm
Computer science
control theory
systems
Exact sciences and technology
Fractional Solution
Maximum Weight
Theoretical computing
Travel Salesman Problem
Triangle Inequality
title Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20Approximation%20Algorithms%20for%20Metric%20Maximum%20ATSP%20and%20Maximum%203-Cycle%20Cover%20Problems&rft.btitle=Algorithms%20and%20Data%20Structures&rft.au=Bl%C3%A4ser,%20Markus&rft.date=2005&rft.spage=350&rft.epage=359&rft.pages=350-359&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540281010&rft.isbn_list=9783540281016&rft_id=info:doi/10.1007/11534273_31&rft_dat=%3Cpascalfrancis_sprin%3E17116059%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540317111&rft.eisbn_list=3540317112&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true