Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems
We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum w...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | |
container_start_page | 350 |
container_title | |
container_volume | |
creator | Bläser, Markus Ram, L. Shankar Sviridenko, Maxim |
description | We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum weight Hamiltonian tour of G. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{31}{40}$\end{document}-approximation algorithm for Δ-Max-ATSP with polynomial running time. Max-3-DCC is the following problem: Given an edge-weighted complete loopless directed graph, compute a spanning collection of node-disjoint cycles, each of length at least three, whose weight is maximum among all such collections. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{3}{4}$\end{document}-approximation algorithm for this problem with polynomial running time. In both cases, we improve on the previous best approximation performances. The results are obtained via a new decomposition technique for the fractional solution of an LP formulation of Max-3-DCC. |
doi_str_mv | 10.1007/11534273_31 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17116059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17116059</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-ce23086b62c9cd4840019095e77f15151d7dc5d61f579351be1ebd587c4d83143</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1Loi098Qd84cAhsBvbcXyMIh6VWlGJckOKEtspgbxkB0T_PamKENrDrnY-jTRDyCXCDQLIW0TBeChZxvCIzJWMmeDAUCLiMZlghBgwxtUJme6FMEZAOCUTYBAGSnJ2TqbevwNAKFU4Ia-LpnfdlzU06cfju2ryoepamtTbzlXDW-Np2Tm6soOrNF3lI_DZ0GTzvKZ5a_4eLEh3urY0Ha0cXbuuqG3jL8hZmdfezn_3jLzc323Sx2D59LBIk2XQh6iGQNuQQRwVUaiVNjzmAKhACStliWIcI40WJsJSSMUEFhZtYUQsNTcxQ85m5Org2-de53Xp8lZXPuvdmMbtsn05EQg1ctcHzo9Su7UuK7ruw2cI2b7b7F-37Ac6hGVT</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems</title><source>Springer Books</source><creator>Bläser, Markus ; Ram, L. Shankar ; Sviridenko, Maxim</creator><contributor>Dehne, Frank ; Sack, Jörg-Rüdiger ; López-Ortiz, Alejandro</contributor><creatorcontrib>Bläser, Markus ; Ram, L. Shankar ; Sviridenko, Maxim ; Dehne, Frank ; Sack, Jörg-Rüdiger ; López-Ortiz, Alejandro</creatorcontrib><description>We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum weight Hamiltonian tour of G. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{31}{40}$\end{document}-approximation algorithm for Δ-Max-ATSP with polynomial running time. Max-3-DCC is the following problem: Given an edge-weighted complete loopless directed graph, compute a spanning collection of node-disjoint cycles, each of length at least three, whose weight is maximum among all such collections. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{3}{4}$\end{document}-approximation algorithm for this problem with polynomial running time. In both cases, we improve on the previous best approximation performances. The results are obtained via a new decomposition technique for the fractional solution of an LP formulation of Max-3-DCC.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540281010</identifier><identifier>ISBN: 9783540281016</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540317111</identifier><identifier>EISBN: 3540317112</identifier><identifier>DOI: 10.1007/11534273_31</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation Algorithm ; Computer science; control theory; systems ; Exact sciences and technology ; Fractional Solution ; Maximum Weight ; Theoretical computing ; Travel Salesman Problem ; Triangle Inequality</subject><ispartof>Algorithms and Data Structures, 2005, p.350-359</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11534273_31$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11534273_31$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17116059$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Dehne, Frank</contributor><contributor>Sack, Jörg-Rüdiger</contributor><contributor>López-Ortiz, Alejandro</contributor><creatorcontrib>Bläser, Markus</creatorcontrib><creatorcontrib>Ram, L. Shankar</creatorcontrib><creatorcontrib>Sviridenko, Maxim</creatorcontrib><title>Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems</title><title>Algorithms and Data Structures</title><description>We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum weight Hamiltonian tour of G. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{31}{40}$\end{document}-approximation algorithm for Δ-Max-ATSP with polynomial running time. Max-3-DCC is the following problem: Given an edge-weighted complete loopless directed graph, compute a spanning collection of node-disjoint cycles, each of length at least three, whose weight is maximum among all such collections. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{3}{4}$\end{document}-approximation algorithm for this problem with polynomial running time. In both cases, we improve on the previous best approximation performances. The results are obtained via a new decomposition technique for the fractional solution of an LP formulation of Max-3-DCC.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation Algorithm</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fractional Solution</subject><subject>Maximum Weight</subject><subject>Theoretical computing</subject><subject>Travel Salesman Problem</subject><subject>Triangle Inequality</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540281010</isbn><isbn>9783540281016</isbn><isbn>9783540317111</isbn><isbn>3540317112</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtPwzAQhM1Loi098Qd84cAhsBvbcXyMIh6VWlGJckOKEtspgbxkB0T_PamKENrDrnY-jTRDyCXCDQLIW0TBeChZxvCIzJWMmeDAUCLiMZlghBgwxtUJme6FMEZAOCUTYBAGSnJ2TqbevwNAKFU4Ia-LpnfdlzU06cfju2ryoepamtTbzlXDW-Np2Tm6soOrNF3lI_DZ0GTzvKZ5a_4eLEh3urY0Ha0cXbuuqG3jL8hZmdfezn_3jLzc323Sx2D59LBIk2XQh6iGQNuQQRwVUaiVNjzmAKhACStliWIcI40WJsJSSMUEFhZtYUQsNTcxQ85m5Org2-de53Xp8lZXPuvdmMbtsn05EQg1ctcHzo9Su7UuK7ruw2cI2b7b7F-37Ac6hGVT</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Bläser, Markus</creator><creator>Ram, L. Shankar</creator><creator>Sviridenko, Maxim</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems</title><author>Bläser, Markus ; Ram, L. Shankar ; Sviridenko, Maxim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-ce23086b62c9cd4840019095e77f15151d7dc5d61f579351be1ebd587c4d83143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation Algorithm</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fractional Solution</topic><topic>Maximum Weight</topic><topic>Theoretical computing</topic><topic>Travel Salesman Problem</topic><topic>Triangle Inequality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bläser, Markus</creatorcontrib><creatorcontrib>Ram, L. Shankar</creatorcontrib><creatorcontrib>Sviridenko, Maxim</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bläser, Markus</au><au>Ram, L. Shankar</au><au>Sviridenko, Maxim</au><au>Dehne, Frank</au><au>Sack, Jörg-Rüdiger</au><au>López-Ortiz, Alejandro</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems</atitle><btitle>Algorithms and Data Structures</btitle><date>2005</date><risdate>2005</risdate><spage>350</spage><epage>359</epage><pages>350-359</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540281010</isbn><isbn>9783540281016</isbn><eisbn>9783540317111</eisbn><eisbn>3540317112</eisbn><abstract>We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum weight Hamiltonian tour of G. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{31}{40}$\end{document}-approximation algorithm for Δ-Max-ATSP with polynomial running time. Max-3-DCC is the following problem: Given an edge-weighted complete loopless directed graph, compute a spanning collection of node-disjoint cycles, each of length at least three, whose weight is maximum among all such collections. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{3}{4}$\end{document}-approximation algorithm for this problem with polynomial running time. In both cases, we improve on the previous best approximation performances. The results are obtained via a new decomposition technique for the fractional solution of an LP formulation of Max-3-DCC.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11534273_31</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Algorithms and Data Structures, 2005, p.350-359 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17116059 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Approximation Algorithm Computer science control theory systems Exact sciences and technology Fractional Solution Maximum Weight Theoretical computing Travel Salesman Problem Triangle Inequality |
title | Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20Approximation%20Algorithms%20for%20Metric%20Maximum%20ATSP%20and%20Maximum%203-Cycle%20Cover%20Problems&rft.btitle=Algorithms%20and%20Data%20Structures&rft.au=Bl%C3%A4ser,%20Markus&rft.date=2005&rft.spage=350&rft.epage=359&rft.pages=350-359&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540281010&rft.isbn_list=9783540281016&rft_id=info:doi/10.1007/11534273_31&rft_dat=%3Cpascalfrancis_sprin%3E17116059%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540317111&rft.eisbn_list=3540317112&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |