Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems
We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum w...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider an APX-hard variant (Δ-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. Δ-Max-ATSP is the following problem: Given an edge-weighted complete loopless directed graph G such that the edge weights fulfill the triangle inequality, find a maximum weight Hamiltonian tour of G. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{31}{40}$\end{document}-approximation algorithm for Δ-Max-ATSP with polynomial running time. Max-3-DCC is the following problem: Given an edge-weighted complete loopless directed graph, compute a spanning collection of node-disjoint cycles, each of length at least three, whose weight is maximum among all such collections. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{3}{4}$\end{document}-approximation algorithm for this problem with polynomial running time. In both cases, we improve on the previous best approximation performances. The results are obtained via a new decomposition technique for the fractional solution of an LP formulation of Max-3-DCC. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11534273_31 |