A Continuous-Discontinuous Second-Order Transition in the Satisfiability of Random Horn-SAT Formulas
We compute the probability of satisfiability of a class of random Horn-SAT formulae, motivated by a connection with the nonemptiness problem of finite tree automata. In particular, when the maximum clause length is three, this model displays a curve in its parameter space along which the probability...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute the probability of satisfiability of a class of random Horn-SAT formulae, motivated by a connection with the nonemptiness problem of finite tree automata. In particular, when the maximum clause length is three, this model displays a curve in its parameter space along which the probability of satisfiability is discontinuous, ending in a second-order phase transition where it becomes continuous. This is the first case in which a phase transition of this type has been rigorously established for a random constraint satisfaction problem. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11538462_35 |