Automatic Selection of Bitmap Join Indexes in Data Warehouses

The queries defined on data warehouses are complex and use several join operations that induce an expensive computational cost. This cost becomes even more prohibitive when queries access very large volumes of data. To improve response time, data warehouse administrators generally use indexing techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aouiche, Kamel, Darmont, Jérôme, Boussaïd, Omar, Bentayeb, Fadila
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The queries defined on data warehouses are complex and use several join operations that induce an expensive computational cost. This cost becomes even more prohibitive when queries access very large volumes of data. To improve response time, data warehouse administrators generally use indexing techniques such as star join indexes or bitmap join indexes. This task is nevertheless complex and fastidious. Our solution lies in the field of data warehouse auto-administration. In this framework, we propose an automatic index selection strategy. We exploit a data mining technique ; more precisely frequent itemset mining, in order to determine a set of candidate indexes from a given workload. Then, we propose several cost models allowing to create an index configuration composed by the indexes providing the best profit. These models evaluate the cost of accessing data using bitmap join indexes, and the cost of updating and storing these indexes.
ISSN:0302-9743
1611-3349
DOI:10.1007/11546849_7