A data envelopment analysis-based approach for data preprocessing

In this paper, we show how the data envelopment analysis (DEA) model might be useful to screen training data so a subset of examples that satisfy monotonicity property can be identified. Using real-world health care and software engineering data, managerial monotonicity assumption, and artificial ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2005-10, Vol.17 (10), p.1379-1388
1. Verfasser: Pendharkar, P.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show how the data envelopment analysis (DEA) model might be useful to screen training data so a subset of examples that satisfy monotonicity property can be identified. Using real-world health care and software engineering data, managerial monotonicity assumption, and artificial neural network (ANN) as a forecasting model, we illustrate that DEA-based data screening of training data improves forecasting accuracy of an ANN.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2005.155