A data envelopment analysis-based approach for data preprocessing
In this paper, we show how the data envelopment analysis (DEA) model might be useful to screen training data so a subset of examples that satisfy monotonicity property can be identified. Using real-world health care and software engineering data, managerial monotonicity assumption, and artificial ne...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2005-10, Vol.17 (10), p.1379-1388 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we show how the data envelopment analysis (DEA) model might be useful to screen training data so a subset of examples that satisfy monotonicity property can be identified. Using real-world health care and software engineering data, managerial monotonicity assumption, and artificial neural network (ANN) as a forecasting model, we illustrate that DEA-based data screening of training data improves forecasting accuracy of an ANN. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2005.155 |