Approximating the Longest Cycle Problem on Graphs with Bounded Degree
In 1993, Jackson and Wormald conjectured that if G is a 3-connected n-vertex graph with maximum degree d≥ 4 then G contains a cycle of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1993, Jackson and Wormald conjectured that if G is a 3-connected n-vertex graph with maximum degree d≥ 4 then G contains a cycle of length \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\Omega(n^{\log_{d-1}2})$
\end{document}, and showed that this bound is best possible if true. In this paper we present an O(n3) algorithm for finding a cycle of length \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\Omega(n^{\log_{b}2})$
\end{document} in G, where b = max {64,4d + 1}. Our result substantially improves the best existing bound \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\Omega(n^{\log_{2(d-1)^2+1}2})$
\end{document}. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11533719_88 |