Discovering Predictive Variables When Evolving Cognitive Models

A non-dominated sorting genetic algorithm is used to evolve models of learning from different theories for multiple tasks. Correlation analysis is performed to identify parameters which affect performance on specific tasks; these are the predictive variables. Mutation is biased so that changes to pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lane, Peter C. R., Gobet, Fernand
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A non-dominated sorting genetic algorithm is used to evolve models of learning from different theories for multiple tasks. Correlation analysis is performed to identify parameters which affect performance on specific tasks; these are the predictive variables. Mutation is biased so that changes to parameter values tend to preserve values within the population’s current range. Experimental results show that optimal models are evolved, and also that uncovering predictive variables is beneficial in improving the rate of convergence.
ISSN:0302-9743
1611-3349
DOI:10.1007/11551188_12