Shape Retrieval by Principal Components Descriptor
Shape information is an important distribution to Content-Base Image Retrieval (CBIR) systems. There are two major types of shape descriptors, namely region-based and contour-based. In this paper we present a shape retrieval method that makes use of a contour-based descriptor, Principal Components D...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Shape information is an important distribution to Content-Base Image Retrieval (CBIR) systems. There are two major types of shape descriptors, namely region-based and contour-based. In this paper we present a shape retrieval method that makes use of a contour-based descriptor, Principal Components Descriptor (PCD). In PCD, shapes are aligned on principal axes and described by a combination of the mean shape and weighted eigenvectors. The retrieval is achieved by comparing the weights of the eigenvectors. The developed approach is applied to Sharvit’s Silhouettes database and the results are compared with MPEG-7 standard contour-based descriptor, Curvature Scale Space (CSS). The comparison indicates that PCD shows higher accuracy than CSS. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11552499_69 |