Effects of ant behaviour and presence of extrafloral nectaries on seed dispersal of the Neotropical myrmecochore Turnera ulmifolia L. (Turneraceae)
This paper describes the myrmecochory system of Turnera ulmifolia in a coastal sand dune matorral in Mexico. Turnera ulmifolia has elaiosome‐bearing seeds and extrafloral nectaries (EFNs). In ten quadrants (4 × 15 m) ant–seed interaction was monitored, and an interaction intensity index calculated a...
Gespeichert in:
Veröffentlicht in: | Biological journal of the Linnean Society 2005-09, Vol.86 (1), p.67-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the myrmecochory system of Turnera ulmifolia in a coastal sand dune matorral in Mexico. Turnera ulmifolia has elaiosome‐bearing seeds and extrafloral nectaries (EFNs). In ten quadrants (4 × 15 m) ant–seed interaction was monitored, and an interaction intensity index calculated and correlated with the number of seedlings. Seed removal rates by ants were surveyed every 2 h for 24 h, the ants being observed both on and beneath the plants. The role of the elaiosome in seed removal was evaluated by offering seeds with and without elaiosomes, and elaiosomes only. Finally, the effect of ant manipulation in seed germination was evaluated. There were 25 ant species associated with seeds and/or EFNs, the most frequently recorded being Monomorium cyaneum and Forelius analis. There was a positive correlation between the intensity index and seedling number per quadrant. There was significantly higher mean seed removal during the day than during the night (19.3% and 12.3%, respectively), and from beneath than on the plant (21.9% and 9.5%, respectively). The preference for elaiosomes only was also greater during the diurnal period, and when gathered on, rather than beneath, the plant. Seed manipulation by F. analis enhanced germination by T. ulmifolia. Seed removal, dispersal distances, seed predation and germination were largely determined by ant behaviour. The presence of EFNs may be influencing seed removal on the plant by attracting a specific assemblage of omnivorous ants. Among such assemblages associated with T. ulmifolia we encountered a variety of behaviours, with ant species either good at defending plants but bad at dispersing seeds, or vice versa. We discuss the way in which these two rewards, and the processes involved (defence and dispersion), could have interacted with each other and evolved. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86, 67–77. |
---|---|
ISSN: | 0024-4066 1095-8312 |
DOI: | 10.1111/j.1095-8312.2005.00525.x |