Practical Inference for Type-Based Termination in a Polymorphic Setting

We introduce a polymorphic λ-calculus that features inductive types and that enforces termination of recursive definitions through typing. Then, we define a sound and complete type inference algorithm that computes a set of constraints to be satisfied for terms to be typable. In addition, we show th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barthe, Gilles, Grégoire, Benjamin, Pastawski, Fernando
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a polymorphic λ-calculus that features inductive types and that enforces termination of recursive definitions through typing. Then, we define a sound and complete type inference algorithm that computes a set of constraints to be satisfied for terms to be typable. In addition, we show that Subject Reduction fails in a naive use of typed-based termination for a λ-calculus à la Church, and we propose a general solution to this problem.
ISSN:0302-9743
1611-3349
DOI:10.1007/11417170_7