Practical Inference for Type-Based Termination in a Polymorphic Setting
We introduce a polymorphic λ-calculus that features inductive types and that enforces termination of recursive definitions through typing. Then, we define a sound and complete type inference algorithm that computes a set of constraints to be satisfied for terms to be typable. In addition, we show th...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a polymorphic λ-calculus that features inductive types and that enforces termination of recursive definitions through typing. Then, we define a sound and complete type inference algorithm that computes a set of constraints to be satisfied for terms to be typable. In addition, we show that Subject Reduction fails in a naive use of typed-based termination for a λ-calculus à la Church, and we propose a general solution to this problem. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11417170_7 |