Privacy-Preserving Collaborative Association Rule Mining
This paper introduces a new approach to a problem of data sharing among multiple parties, without disclosing the data between the parties. Our focus is data sharing among parties involved in a data mining task. We study how to share private or confidential data in the following scenario: multiple pa...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a new approach to a problem of data sharing among multiple parties, without disclosing the data between the parties. Our focus is data sharing among parties involved in a data mining task. We study how to share private or confidential data in the following scenario: multiple parties, each having a private data set, want to collaboratively conduct association rule mining without disclosing their private data to each other or any other parties. To tackle this demanding problem, we develop a secure protocol for multiple parties to conduct the desired computation. The solution is distributed, i.e., there is no central, trusted party having access to all the data. Instead, we define a protocol using homomorphic encryption techniques to exchange the data while keeping it private. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11535706_12 |