Towards a Theoretical Foundation for Laplacian-Based Manifold Methods

In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Belkin, Mikhail, Niyogi, Partha
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue
container_start_page 486
container_title
container_volume
creator Belkin, Mikhail
Niyogi, Partha
description In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. We show that under certain conditions the graph Laplacian of a point cloud converges to the Laplace-Beltrami operator on the underlying manifold. Theorem 1 contains the first result showing convergence of a random graph Laplacian to manifold Laplacian in the machine learning context.
doi_str_mv 10.1007/11503415_33
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17026711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17026711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-521f587d576457ffbb9f657270906fea00660b7bd688692859a0df59a29bc70e3</originalsourceid><addsrcrecordid>eNpNUD1PwzAQNV8SpXTiD2RhYAic7diOR6haQApiKbN1iW0aCHFlByH-PUZl4Ia7J713p3uPkAsK1xRA3VAqgFdUGM4PyBkXFXBaayYOyYxKSkvOK320J5gUQrJjMgMOrNSq4qdkkdIb5MpLsqpmZLUJXxhtKrDYbF2Ibuo7HIp1-BwtTn0YCx9i0eBuwK7HsbzD5GzxhGPvw5CBm7bBpnNy4nFIbvE35-RlvdosH8rm-f5xeduUHWdqKgWjXtTKCiUrobxvW-2lUEyBBukdAkgJrWqtrGupWS00gvW5M912Chyfk8v93R2m_KaPOHZ9MrvYf2D8NlRlz4rSrLva61KmxlcXTRvCezIUzG-I5l-I_AcbG10_</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards a Theoretical Foundation for Laplacian-Based Manifold Methods</title><source>Springer Books</source><creator>Belkin, Mikhail ; Niyogi, Partha</creator><contributor>Auer, Peter ; Meir, Ron</contributor><creatorcontrib>Belkin, Mikhail ; Niyogi, Partha ; Auer, Peter ; Meir, Ron</creatorcontrib><description>In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. We show that under certain conditions the graph Laplacian of a point cloud converges to the Laplace-Beltrami operator on the underlying manifold. Theorem 1 contains the first result showing convergence of a random graph Laplacian to manifold Laplacian in the machine learning context.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540265562</identifier><identifier>ISBN: 9783540265566</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318925</identifier><identifier>EISBN: 9783540318927</identifier><identifier>DOI: 10.1007/11503415_33</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Geodesic Distance ; Heat Equation ; Heat Kernel ; Learning and adaptive systems ; Point Cloud ; Spectral Cluster</subject><ispartof>Learning Theory, 2005, p.486-500</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-521f587d576457ffbb9f657270906fea00660b7bd688692859a0df59a29bc70e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11503415_33$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11503415_33$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17026711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Auer, Peter</contributor><contributor>Meir, Ron</contributor><creatorcontrib>Belkin, Mikhail</creatorcontrib><creatorcontrib>Niyogi, Partha</creatorcontrib><title>Towards a Theoretical Foundation for Laplacian-Based Manifold Methods</title><title>Learning Theory</title><description>In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. We show that under certain conditions the graph Laplacian of a point cloud converges to the Laplace-Beltrami operator on the underlying manifold. Theorem 1 contains the first result showing convergence of a random graph Laplacian to manifold Laplacian in the machine learning context.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Geodesic Distance</subject><subject>Heat Equation</subject><subject>Heat Kernel</subject><subject>Learning and adaptive systems</subject><subject>Point Cloud</subject><subject>Spectral Cluster</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540265562</isbn><isbn>9783540265566</isbn><isbn>3540318925</isbn><isbn>9783540318927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUD1PwzAQNV8SpXTiD2RhYAic7diOR6haQApiKbN1iW0aCHFlByH-PUZl4Ia7J713p3uPkAsK1xRA3VAqgFdUGM4PyBkXFXBaayYOyYxKSkvOK320J5gUQrJjMgMOrNSq4qdkkdIb5MpLsqpmZLUJXxhtKrDYbF2Ibuo7HIp1-BwtTn0YCx9i0eBuwK7HsbzD5GzxhGPvw5CBm7bBpnNy4nFIbvE35-RlvdosH8rm-f5xeduUHWdqKgWjXtTKCiUrobxvW-2lUEyBBukdAkgJrWqtrGupWS00gvW5M912Chyfk8v93R2m_KaPOHZ9MrvYf2D8NlRlz4rSrLva61KmxlcXTRvCezIUzG-I5l-I_AcbG10_</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Belkin, Mikhail</creator><creator>Niyogi, Partha</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Towards a Theoretical Foundation for Laplacian-Based Manifold Methods</title><author>Belkin, Mikhail ; Niyogi, Partha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-521f587d576457ffbb9f657270906fea00660b7bd688692859a0df59a29bc70e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Geodesic Distance</topic><topic>Heat Equation</topic><topic>Heat Kernel</topic><topic>Learning and adaptive systems</topic><topic>Point Cloud</topic><topic>Spectral Cluster</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belkin, Mikhail</creatorcontrib><creatorcontrib>Niyogi, Partha</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belkin, Mikhail</au><au>Niyogi, Partha</au><au>Auer, Peter</au><au>Meir, Ron</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards a Theoretical Foundation for Laplacian-Based Manifold Methods</atitle><btitle>Learning Theory</btitle><date>2005</date><risdate>2005</risdate><spage>486</spage><epage>500</epage><pages>486-500</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540265562</isbn><isbn>9783540265566</isbn><eisbn>3540318925</eisbn><eisbn>9783540318927</eisbn><abstract>In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. We show that under certain conditions the graph Laplacian of a point cloud converges to the Laplace-Beltrami operator on the underlying manifold. Theorem 1 contains the first result showing convergence of a random graph Laplacian to manifold Laplacian in the machine learning context.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11503415_33</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Learning Theory, 2005, p.486-500
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17026711
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Geodesic Distance
Heat Equation
Heat Kernel
Learning and adaptive systems
Point Cloud
Spectral Cluster
title Towards a Theoretical Foundation for Laplacian-Based Manifold Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20a%20Theoretical%20Foundation%20for%20Laplacian-Based%20Manifold%20Methods&rft.btitle=Learning%20Theory&rft.au=Belkin,%20Mikhail&rft.date=2005&rft.spage=486&rft.epage=500&rft.pages=486-500&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540265562&rft.isbn_list=9783540265566&rft_id=info:doi/10.1007/11503415_33&rft_dat=%3Cpascalfrancis_sprin%3E17026711%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318925&rft.eisbn_list=9783540318927&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true