Towards a Theoretical Foundation for Laplacian-Based Manifold Methods
In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and p...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | |
container_start_page | 486 |
container_title | |
container_volume | |
creator | Belkin, Mikhail Niyogi, Partha |
description | In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. We show that under certain conditions the graph Laplacian of a point cloud converges to the Laplace-Beltrami operator on the underlying manifold. Theorem 1 contains the first result showing convergence of a random graph Laplacian to manifold Laplacian in the machine learning context. |
doi_str_mv | 10.1007/11503415_33 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17026711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17026711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-521f587d576457ffbb9f657270906fea00660b7bd688692859a0df59a29bc70e3</originalsourceid><addsrcrecordid>eNpNUD1PwzAQNV8SpXTiD2RhYAic7diOR6haQApiKbN1iW0aCHFlByH-PUZl4Ia7J713p3uPkAsK1xRA3VAqgFdUGM4PyBkXFXBaayYOyYxKSkvOK320J5gUQrJjMgMOrNSq4qdkkdIb5MpLsqpmZLUJXxhtKrDYbF2Ibuo7HIp1-BwtTn0YCx9i0eBuwK7HsbzD5GzxhGPvw5CBm7bBpnNy4nFIbvE35-RlvdosH8rm-f5xeduUHWdqKgWjXtTKCiUrobxvW-2lUEyBBukdAkgJrWqtrGupWS00gvW5M912Chyfk8v93R2m_KaPOHZ9MrvYf2D8NlRlz4rSrLva61KmxlcXTRvCezIUzG-I5l-I_AcbG10_</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards a Theoretical Foundation for Laplacian-Based Manifold Methods</title><source>Springer Books</source><creator>Belkin, Mikhail ; Niyogi, Partha</creator><contributor>Auer, Peter ; Meir, Ron</contributor><creatorcontrib>Belkin, Mikhail ; Niyogi, Partha ; Auer, Peter ; Meir, Ron</creatorcontrib><description>In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. We show that under certain conditions the graph Laplacian of a point cloud converges to the Laplace-Beltrami operator on the underlying manifold. Theorem 1 contains the first result showing convergence of a random graph Laplacian to manifold Laplacian in the machine learning context.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540265562</identifier><identifier>ISBN: 9783540265566</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318925</identifier><identifier>EISBN: 9783540318927</identifier><identifier>DOI: 10.1007/11503415_33</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Geodesic Distance ; Heat Equation ; Heat Kernel ; Learning and adaptive systems ; Point Cloud ; Spectral Cluster</subject><ispartof>Learning Theory, 2005, p.486-500</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-521f587d576457ffbb9f657270906fea00660b7bd688692859a0df59a29bc70e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11503415_33$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11503415_33$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17026711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Auer, Peter</contributor><contributor>Meir, Ron</contributor><creatorcontrib>Belkin, Mikhail</creatorcontrib><creatorcontrib>Niyogi, Partha</creatorcontrib><title>Towards a Theoretical Foundation for Laplacian-Based Manifold Methods</title><title>Learning Theory</title><description>In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. We show that under certain conditions the graph Laplacian of a point cloud converges to the Laplace-Beltrami operator on the underlying manifold. Theorem 1 contains the first result showing convergence of a random graph Laplacian to manifold Laplacian in the machine learning context.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Geodesic Distance</subject><subject>Heat Equation</subject><subject>Heat Kernel</subject><subject>Learning and adaptive systems</subject><subject>Point Cloud</subject><subject>Spectral Cluster</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540265562</isbn><isbn>9783540265566</isbn><isbn>3540318925</isbn><isbn>9783540318927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUD1PwzAQNV8SpXTiD2RhYAic7diOR6haQApiKbN1iW0aCHFlByH-PUZl4Ia7J713p3uPkAsK1xRA3VAqgFdUGM4PyBkXFXBaayYOyYxKSkvOK320J5gUQrJjMgMOrNSq4qdkkdIb5MpLsqpmZLUJXxhtKrDYbF2Ibuo7HIp1-BwtTn0YCx9i0eBuwK7HsbzD5GzxhGPvw5CBm7bBpnNy4nFIbvE35-RlvdosH8rm-f5xeduUHWdqKgWjXtTKCiUrobxvW-2lUEyBBukdAkgJrWqtrGupWS00gvW5M912Chyfk8v93R2m_KaPOHZ9MrvYf2D8NlRlz4rSrLva61KmxlcXTRvCezIUzG-I5l-I_AcbG10_</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Belkin, Mikhail</creator><creator>Niyogi, Partha</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Towards a Theoretical Foundation for Laplacian-Based Manifold Methods</title><author>Belkin, Mikhail ; Niyogi, Partha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-521f587d576457ffbb9f657270906fea00660b7bd688692859a0df59a29bc70e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Geodesic Distance</topic><topic>Heat Equation</topic><topic>Heat Kernel</topic><topic>Learning and adaptive systems</topic><topic>Point Cloud</topic><topic>Spectral Cluster</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belkin, Mikhail</creatorcontrib><creatorcontrib>Niyogi, Partha</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belkin, Mikhail</au><au>Niyogi, Partha</au><au>Auer, Peter</au><au>Meir, Ron</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards a Theoretical Foundation for Laplacian-Based Manifold Methods</atitle><btitle>Learning Theory</btitle><date>2005</date><risdate>2005</risdate><spage>486</spage><epage>500</epage><pages>486-500</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540265562</isbn><isbn>9783540265566</isbn><eisbn>3540318925</eisbn><eisbn>9783540318927</eisbn><abstract>In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. We show that under certain conditions the graph Laplacian of a point cloud converges to the Laplace-Beltrami operator on the underlying manifold. Theorem 1 contains the first result showing convergence of a random graph Laplacian to manifold Laplacian in the machine learning context.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11503415_33</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Learning Theory, 2005, p.486-500 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17026711 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Geodesic Distance Heat Equation Heat Kernel Learning and adaptive systems Point Cloud Spectral Cluster |
title | Towards a Theoretical Foundation for Laplacian-Based Manifold Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20a%20Theoretical%20Foundation%20for%20Laplacian-Based%20Manifold%20Methods&rft.btitle=Learning%20Theory&rft.au=Belkin,%20Mikhail&rft.date=2005&rft.spage=486&rft.epage=500&rft.pages=486-500&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540265562&rft.isbn_list=9783540265566&rft_id=info:doi/10.1007/11503415_33&rft_dat=%3Cpascalfrancis_sprin%3E17026711%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318925&rft.eisbn_list=9783540318927&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |