Towards a Theoretical Foundation for Laplacian-Based Manifold Methods
In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and p...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. We show that under certain conditions the graph Laplacian of a point cloud converges to the Laplace-Beltrami operator on the underlying manifold. Theorem 1 contains the first result showing convergence of a random graph Laplacian to manifold Laplacian in the machine learning context. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11503415_33 |