Efficient Tate Pairing Computation for Elliptic Curves over Binary Fields
In this paper, we present a closed formula for the Tate pairing computation for supersingular elliptic curves defined over the binary field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \us...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a closed formula for the Tate pairing computation for supersingular elliptic curves defined over the binary field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb F_{2^m}$\end{document} of odd dimension. There are exactly three isomorphism classes of supersingular elliptic curves over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb F_{2^m}$\end{document} for odd m and our result is applicable to all these curves. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11506157_12 |