Polynomial Time SAT Decision, Hypergraph Transversals and the Hermitian Rank

Combining graph theory and linear algebra, we study SAT problems of low “linear algebra complexity”, considering formulas with bounded hermitian rank. We show polynomial time SAT decision of the class of formulas with hermitian rank at most one, applying methods from hypergraph transversal theory. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Galesi, Nicola, Kullmann, Oliver
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Combining graph theory and linear algebra, we study SAT problems of low “linear algebra complexity”, considering formulas with bounded hermitian rank. We show polynomial time SAT decision of the class of formulas with hermitian rank at most one, applying methods from hypergraph transversal theory. Applications to heuristics for SAT algorithms and to the structure of minimally unsatisfiable clause-sets are discussed.
ISSN:0302-9743
1611-3349
DOI:10.1007/11527695_8