Polynomial Time SAT Decision, Hypergraph Transversals and the Hermitian Rank
Combining graph theory and linear algebra, we study SAT problems of low “linear algebra complexity”, considering formulas with bounded hermitian rank. We show polynomial time SAT decision of the class of formulas with hermitian rank at most one, applying methods from hypergraph transversal theory. A...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Combining graph theory and linear algebra, we study SAT problems of low “linear algebra complexity”, considering formulas with bounded hermitian rank. We show polynomial time SAT decision of the class of formulas with hermitian rank at most one, applying methods from hypergraph transversal theory. Applications to heuristics for SAT algorithms and to the structure of minimally unsatisfiable clause-sets are discussed. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11527695_8 |