Worst Case Bounds for Some NP-Complete Modified Horn-SAT Problems
We consider the satisfiability problem for CNF formulas that contain a (hidden) Horn and a 2-CNF (also called quadratic) part, called mixed (hidden) Horn formulas. We show that SAT remains NP-complete for such instances and also that any SAT instance can be encoded in terms of a mixed Horn formula i...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the satisfiability problem for CNF formulas that contain a (hidden) Horn and a 2-CNF (also called quadratic) part, called mixed (hidden) Horn formulas. We show that SAT remains NP-complete for such instances and also that any SAT instance can be encoded in terms of a mixed Horn formula in polynomial time. Further, we provide an exact deterministic algorithm showing that SAT for mixed (hidden) Horn formulas containing n variables is solvable in time O(2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm 0.5284{\it n}}$\end{document}). A strong argument showing that it is hard to improve a time bound of O(2n/2) for mixed Horn formulas is provided. We also obtain a fixed-parameter tractability classification for SAT restricted to mixed Horn formulas C of at most k variables in its positive 2-CNF part providing the bound O(||C||20.5284k). Motivating examples for mixed Horn formulas are level graph formulas [14] and graph colorability formulas. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11527695_20 |