On the Wake-Up Problem in Radio Networks
Radio networks model wireless communication when processing units communicate using one wave frequency. This is captured by the property that multiple messages arriving simultaneously to a node interfere with one another and none of them can be read reliably. We present improved solutions to the pro...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radio networks model wireless communication when processing units communicate using one wave frequency. This is captured by the property that multiple messages arriving simultaneously to a node interfere with one another and none of them can be read reliably. We present improved solutions to the problem of waking up such a network. This requires activating all nodes in a scenario when some nodes start to be active spontaneously, while every sleeping node needs to be awaken by receiving successfully a message from a neighbor. Our contributions concern the existence and efficient construction of universal radio synchronizers, which are combinatorial structures introduced in [6] as building blocks of efficient wake-up algorithms. First we show by counting that there are (n,g)-universal synchronizers for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$g(k)={\mathcal O}(k \ {\rm log}\ k \ {\rm log}\ n)$\end{document}. Next we show an explicit construction of (n,g)-universal-synchronizers for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$g(k) = {\mathcal O}(k^{2}{\rm polylog}\ n)$\end{document}. By way of applications, we obtain an existential wake-up algorithm which works in time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal O}(n {\rm log}^{2}n)$\end{document} and an explicitly instantiated algorithm that works in time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal O}(n{\it \Delta} {\rm polylog}\ n)$\end{document}, where n is the number of nodes and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\it \Delta}$\end{document} is the maximum in-degree |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11523468_29 |