On the Wake-Up Problem in Radio Networks

Radio networks model wireless communication when processing units communicate using one wave frequency. This is captured by the property that multiple messages arriving simultaneously to a node interfere with one another and none of them can be read reliably. We present improved solutions to the pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chlebus, Bogdan S., Gąsieniec, Leszek, Kowalski, Dariusz R., Radzik, Tomasz
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radio networks model wireless communication when processing units communicate using one wave frequency. This is captured by the property that multiple messages arriving simultaneously to a node interfere with one another and none of them can be read reliably. We present improved solutions to the problem of waking up such a network. This requires activating all nodes in a scenario when some nodes start to be active spontaneously, while every sleeping node needs to be awaken by receiving successfully a message from a neighbor. Our contributions concern the existence and efficient construction of universal radio synchronizers, which are combinatorial structures introduced in [6] as building blocks of efficient wake-up algorithms. First we show by counting that there are (n,g)-universal synchronizers for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(k)={\mathcal O}(k \ {\rm log}\ k \ {\rm log}\ n)$\end{document}. Next we show an explicit construction of (n,g)-universal-synchronizers for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(k) = {\mathcal O}(k^{2}{\rm polylog}\ n)$\end{document}. By way of applications, we obtain an existential wake-up algorithm which works in time  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal O}(n {\rm log}^{2}n)$\end{document} and an explicitly instantiated algorithm that works in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal O}(n{\it \Delta} {\rm polylog}\ n)$\end{document}, where n is the number of nodes and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\it \Delta}$\end{document} is the maximum in-degree
ISSN:0302-9743
1611-3349
DOI:10.1007/11523468_29