Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval
We prove new lower bounds for locally decodable codes and private information retrieval. We show that a 2-query LDC encoding n-bit strings over an ℓ-bit alphabet, where the decoder only uses b bits of each queried position, needs code length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepac...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove new lower bounds for locally decodable codes and private information retrieval. We show that a 2-query LDC encoding n-bit strings over an ℓ-bit alphabet, where the decoder only uses b bits of each queried position, needs code length \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$m=exp\left(\Omega\left(\frac{n}{2^{b}{\sum_{i=0}^{b}}(^{l}_{i})}\right)\right)$\end{document}
Similarly, a 2-server PIR scheme with an n-bit database and t-bit queries, where the user only needs b bits from each of the two ℓ-bit answers, unknown to the servers, satisfies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$t=\Omega \left(\frac{n}{2^{b}\sum_{i=0}^{b}(^{l}_{i})}\right)$\end{document} This implies that several known PIR schemes are close to optimal. Our results generalize those of Goldreich et al. [8], who proved roughly the same bounds for linear LDCs and PIRs. Like earlier work by Kerenidis and de Wolf [12], our classical bounds are proved using quantum computational techniques. In particular, we give a tight analysis of how well a 2-input function can be computed from a quantum superposition of both inputs. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11523468_115 |