Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval

We prove new lower bounds for locally decodable codes and private information retrieval. We show that a 2-query LDC encoding n-bit strings over an ℓ-bit alphabet, where the decoder only uses b bits of each queried position, needs code length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wehner, Stephanie, de Wolf, Ronald
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove new lower bounds for locally decodable codes and private information retrieval. We show that a 2-query LDC encoding n-bit strings over an ℓ-bit alphabet, where the decoder only uses b bits of each queried position, needs code length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m=exp\left(\Omega\left(\frac{n}{2^{b}{\sum_{i=0}^{b}}(^{l}_{i})}\right)\right)$\end{document} Similarly, a 2-server PIR scheme with an n-bit database and t-bit queries, where the user only needs b bits from each of the two ℓ-bit answers, unknown to the servers, satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=\Omega \left(\frac{n}{2^{b}\sum_{i=0}^{b}(^{l}_{i})}\right)$\end{document} This implies that several known PIR schemes are close to optimal. Our results generalize those of Goldreich et al. [8], who proved roughly the same bounds for linear LDCs and PIRs. Like earlier work by Kerenidis and de Wolf [12], our classical bounds are proved using quantum computational techniques. In particular, we give a tight analysis of how well a 2-input function can be computed from a quantum superposition of both inputs.
ISSN:0302-9743
1611-3349
DOI:10.1007/11523468_115