Estimation of Critical Parameters in Concrete Production Using Multispectral Vision Technology

We analyze multispectral reflectance images of concrete aggregate material, and design computational measures of the important and critical parameters used in concrete production. The features extracted from the images are exploited as explanatory variables in regression models and used to predict a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hansen, Michael E., Ersbøll, Bjarne K., Carstensen, Jens M., Nielsen, Allan A.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze multispectral reflectance images of concrete aggregate material, and design computational measures of the important and critical parameters used in concrete production. The features extracted from the images are exploited as explanatory variables in regression models and used to predict aggregate type, water content, and size distribution. We analyze and validate the methods on five representative aggregate types, commonly used in concrete production. Using cross validation, the generated models proves to have a high performance in predicting all of the critical parameters.
ISSN:0302-9743
1611-3349
DOI:10.1007/11499145_124