Online Algorithms for Mining Inter-stream Associations from Large Sensor Networks
We study the problem of mining frequent value sets from a large sensor network. We discuss how sensor stream data could be represented that facilitates efficient online mining and propose the interval-list representation. Based on Lossy Counting, we propose ILB, an interval-list-based online mining...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the problem of mining frequent value sets from a large sensor network. We discuss how sensor stream data could be represented that facilitates efficient online mining and propose the interval-list representation. Based on Lossy Counting, we propose ILB, an interval-list-based online mining algorithm for discovering frequent sensor value sets. Through extensive experiments, we compare the performance of ILB against an application of Lossy Counting (LC) using a weighted transformation method. Results show that ILB outperforms LC significantly for large sensor networks. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11430919_18 |