Online Algorithms for Mining Inter-stream Associations from Large Sensor Networks

We study the problem of mining frequent value sets from a large sensor network. We discuss how sensor stream data could be represented that facilitates efficient online mining and propose the interval-list representation. Based on Lossy Counting, we propose ILB, an interval-list-based online mining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Loo, K. K., Tong, Ivy, Kao, Ben
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the problem of mining frequent value sets from a large sensor network. We discuss how sensor stream data could be represented that facilitates efficient online mining and propose the interval-list representation. Based on Lossy Counting, we propose ILB, an interval-list-based online mining algorithm for discovering frequent sensor value sets. Through extensive experiments, we compare the performance of ILB against an application of Lossy Counting (LC) using a weighted transformation method. Results show that ILB outperforms LC significantly for large sensor networks.
ISSN:0302-9743
1611-3349
DOI:10.1007/11430919_18