On Multiple Query Optimization in Data Mining

Traditional multiple query optimization methods focus on identifying common subexpressions in sets of relational queries and on constructing their global execution plans. In this paper we consider the problem of optimizing sets of data mining queries submitted to a Knowledge Discovery Management Sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wojciechowski, Marek, Zakrzewicz, Maciej
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional multiple query optimization methods focus on identifying common subexpressions in sets of relational queries and on constructing their global execution plans. In this paper we consider the problem of optimizing sets of data mining queries submitted to a Knowledge Discovery Management System. We describe the problem of data mining query scheduling and we introduce a new algorithm called CCAgglomerative to schedule data mining queries for frequent itemset discovery.
ISSN:0302-9743
1611-3349
DOI:10.1007/11430919_80