On Decidability Within the Arithmetic of Addition and Divisibility

The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bozga, Marius, Iosif, Radu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 439
container_issue
container_start_page 425
container_title
container_volume 3441
creator Bozga, Marius
Iosif, Radu
description The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and divisibility are the arithmetic of addition, proved by M. Presburger [13], and the purely existential subset, proved by L. Lipshitz [11]. In this paper we define a new decidable fragment of the form QzQ1x1 ... Qnxnϕ(x,z) where the only variable allowed to occur to the left of the divisibility sign is z. For this form, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} in the paper, we show the existence of a quantifier elimination procedure which always leads to formulas of Presburger arithmetic. We generalize the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}  form to ∃ z1,... ∃ zmQ1x1...Qnxnϕ(x,z), where the only variables appearing on the left of divisibility are z1, ..., zm. For this form, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document}, we show decidability of the positive fragment, namely by reduction to the existential theory of the arithmetic with addition and divisibility. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} fragments were inspired by a real application in the field o
doi_str_mv 10.1007/978-3-540-31982-5_27
format Conference Proceeding
fullrecord <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16895154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00374872v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h374t-b0bf18b16f71a419302515c7cb628a1fd020fbecece5db3cab53965f21ed1ec53</originalsourceid><addsrcrecordid>eNo9kLtOwzAUhs1NopS-AUMWBgaDjy-xM4YWKFKlLiBGy3YSYkgTFEeV-vY4DcIebP3nO758CN0AuQdC5EMmFWZYcIIZZIpioak8QVcsJseAn6IZpACYMZ6doUXkxxoVTCl-jmaEEYozydklWoTwReJgIKVUM_S4bZNV6XxhrG_8cEg-_FD7NhnqMsn7uN-Vg3dJVyV5UfjBd21i2iJZ-b0Pfmq5RheVaUK5-Fvn6P356W25xpvty-sy3-CaST5gS2wFykJaSTAcsvgmAcJJZ1OqDFQFoaSypYtTFJY5YwXLUlFRKAsonWBzdDedW5tG__R-Z_qD7ozX63yjxyz-SnIl6R4iezuxPyY401S9aZ0P_12QqixeziNHJy7EUvtZ9tp23XfQQPRoXkeTmunoUh9F69E8-wWlR3Bu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Decidability Within the Arithmetic of Addition and Divisibility</title><source>Springer Books</source><creator>Bozga, Marius ; Iosif, Radu</creator><contributor>Sassone, Vladimiro</contributor><creatorcontrib>Bozga, Marius ; Iosif, Radu ; Sassone, Vladimiro</creatorcontrib><description>The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and divisibility are the arithmetic of addition, proved by M. Presburger [13], and the purely existential subset, proved by L. Lipshitz [11]. In this paper we define a new decidable fragment of the form QzQ1x1 ... Qnxnϕ(x,z) where the only variable allowed to occur to the left of the divisibility sign is z. For this form, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} in the paper, we show the existence of a quantifier elimination procedure which always leads to formulas of Presburger arithmetic. We generalize the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}  form to ∃ z1,... ∃ zmQ1x1...Qnxnϕ(x,z), where the only variables appearing on the left of divisibility are z1, ..., zm. For this form, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document}, we show decidability of the positive fragment, namely by reduction to the existential theory of the arithmetic with addition and divisibility. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} fragments were inspired by a real application in the field of program verification. We considered the satisfiability problem for a program logic used for quantitative reasoning about memory shapes, in the case where each record has at most one pointer field. The reduction of this problem to the positive subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} is sketched in the end of the paper.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540253884</identifier><identifier>ISBN: 3540253882</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540319824</identifier><identifier>EISBN: 9783540319825</identifier><identifier>DOI: 10.1007/978-3-540-31982-5_27</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Arithmetic Progression ; Atomic Proposition ; Chinese Remainder Theorem ; Computer Science ; Computer science; control theory; systems ; Conjunctive Normal Form ; Elimination Procedure ; Embedded Systems ; Exact sciences and technology ; Software ; Software engineering</subject><ispartof>Foundations of Software Science and Computational Structures, 2005, Vol.3441, p.425-439</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4412-5684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-31982-5_27$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-31982-5_27$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,779,780,784,789,790,793,885,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16895154$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00374872$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Sassone, Vladimiro</contributor><creatorcontrib>Bozga, Marius</creatorcontrib><creatorcontrib>Iosif, Radu</creatorcontrib><title>On Decidability Within the Arithmetic of Addition and Divisibility</title><title>Foundations of Software Science and Computational Structures</title><description>The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and divisibility are the arithmetic of addition, proved by M. Presburger [13], and the purely existential subset, proved by L. Lipshitz [11]. In this paper we define a new decidable fragment of the form QzQ1x1 ... Qnxnϕ(x,z) where the only variable allowed to occur to the left of the divisibility sign is z. For this form, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} in the paper, we show the existence of a quantifier elimination procedure which always leads to formulas of Presburger arithmetic. We generalize the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}  form to ∃ z1,... ∃ zmQ1x1...Qnxnϕ(x,z), where the only variables appearing on the left of divisibility are z1, ..., zm. For this form, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document}, we show decidability of the positive fragment, namely by reduction to the existential theory of the arithmetic with addition and divisibility. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} fragments were inspired by a real application in the field of program verification. We considered the satisfiability problem for a program logic used for quantitative reasoning about memory shapes, in the case where each record has at most one pointer field. The reduction of this problem to the positive subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} is sketched in the end of the paper.</description><subject>Applied sciences</subject><subject>Arithmetic Progression</subject><subject>Atomic Proposition</subject><subject>Chinese Remainder Theorem</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Conjunctive Normal Form</subject><subject>Elimination Procedure</subject><subject>Embedded Systems</subject><subject>Exact sciences and technology</subject><subject>Software</subject><subject>Software engineering</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540253884</isbn><isbn>3540253882</isbn><isbn>3540319824</isbn><isbn>9783540319825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kLtOwzAUhs1NopS-AUMWBgaDjy-xM4YWKFKlLiBGy3YSYkgTFEeV-vY4DcIebP3nO758CN0AuQdC5EMmFWZYcIIZZIpioak8QVcsJseAn6IZpACYMZ6doUXkxxoVTCl-jmaEEYozydklWoTwReJgIKVUM_S4bZNV6XxhrG_8cEg-_FD7NhnqMsn7uN-Vg3dJVyV5UfjBd21i2iJZ-b0Pfmq5RheVaUK5-Fvn6P356W25xpvty-sy3-CaST5gS2wFykJaSTAcsvgmAcJJZ1OqDFQFoaSypYtTFJY5YwXLUlFRKAsonWBzdDedW5tG__R-Z_qD7ozX63yjxyz-SnIl6R4iezuxPyY401S9aZ0P_12QqixeziNHJy7EUvtZ9tp23XfQQPRoXkeTmunoUh9F69E8-wWlR3Bu</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Bozga, Marius</creator><creator>Iosif, Radu</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4412-5684</orcidid></search><sort><creationdate>20050101</creationdate><title>On Decidability Within the Arithmetic of Addition and Divisibility</title><author>Bozga, Marius ; Iosif, Radu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h374t-b0bf18b16f71a419302515c7cb628a1fd020fbecece5db3cab53965f21ed1ec53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Arithmetic Progression</topic><topic>Atomic Proposition</topic><topic>Chinese Remainder Theorem</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Conjunctive Normal Form</topic><topic>Elimination Procedure</topic><topic>Embedded Systems</topic><topic>Exact sciences and technology</topic><topic>Software</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozga, Marius</creatorcontrib><creatorcontrib>Iosif, Radu</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozga, Marius</au><au>Iosif, Radu</au><au>Sassone, Vladimiro</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Decidability Within the Arithmetic of Addition and Divisibility</atitle><btitle>Foundations of Software Science and Computational Structures</btitle><date>2005-01-01</date><risdate>2005</risdate><volume>3441</volume><spage>425</spage><epage>439</epage><pages>425-439</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540253884</isbn><isbn>3540253882</isbn><eisbn>3540319824</eisbn><eisbn>9783540319825</eisbn><abstract>The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and divisibility are the arithmetic of addition, proved by M. Presburger [13], and the purely existential subset, proved by L. Lipshitz [11]. In this paper we define a new decidable fragment of the form QzQ1x1 ... Qnxnϕ(x,z) where the only variable allowed to occur to the left of the divisibility sign is z. For this form, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} in the paper, we show the existence of a quantifier elimination procedure which always leads to formulas of Presburger arithmetic. We generalize the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}  form to ∃ z1,... ∃ zmQ1x1...Qnxnϕ(x,z), where the only variables appearing on the left of divisibility are z1, ..., zm. For this form, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document}, we show decidability of the positive fragment, namely by reduction to the existential theory of the arithmetic with addition and divisibility. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} fragments were inspired by a real application in the field of program verification. We considered the satisfiability problem for a program logic used for quantitative reasoning about memory shapes, in the case where each record has at most one pointer field. The reduction of this problem to the positive subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} is sketched in the end of the paper.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-31982-5_27</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4412-5684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Foundations of Software Science and Computational Structures, 2005, Vol.3441, p.425-439
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16895154
source Springer Books
subjects Applied sciences
Arithmetic Progression
Atomic Proposition
Chinese Remainder Theorem
Computer Science
Computer science
control theory
systems
Conjunctive Normal Form
Elimination Procedure
Embedded Systems
Exact sciences and technology
Software
Software engineering
title On Decidability Within the Arithmetic of Addition and Divisibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Decidability%20Within%20the%20Arithmetic%20of%20Addition%20and%20Divisibility&rft.btitle=Foundations%20of%20Software%20Science%20and%20Computational%20Structures&rft.au=Bozga,%20Marius&rft.date=2005-01-01&rft.volume=3441&rft.spage=425&rft.epage=439&rft.pages=425-439&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540253884&rft.isbn_list=3540253882&rft_id=info:doi/10.1007/978-3-540-31982-5_27&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_00374872v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540319824&rft.eisbn_list=9783540319825&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true