On Decidability Within the Arithmetic of Addition and Divisibility
The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and di...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 439 |
---|---|
container_issue | |
container_start_page | 425 |
container_title | |
container_volume | 3441 |
creator | Bozga, Marius Iosif, Radu |
description | The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and divisibility are the arithmetic of addition, proved by M. Presburger [13], and the purely existential subset, proved by L. Lipshitz [11]. In this paper we define a new decidable fragment of the form QzQ1x1 ... Qnxnϕ(x,z) where the only variable allowed to occur to the left of the divisibility sign is z. For this form, called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} in the paper, we show the existence of a quantifier elimination procedure which always leads to formulas of Presburger arithmetic. We generalize the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} form to ∃ z1,... ∃ zmQ1x1...Qnxnϕ(x,z), where the only variables appearing on the left of divisibility are z1, ..., zm. For this form, called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document}, we show decidability of the positive fragment, namely by reduction to the existential theory of the arithmetic with addition and divisibility. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} fragments were inspired by a real application in the field o |
doi_str_mv | 10.1007/978-3-540-31982-5_27 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16895154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00374872v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h374t-b0bf18b16f71a419302515c7cb628a1fd020fbecece5db3cab53965f21ed1ec53</originalsourceid><addsrcrecordid>eNo9kLtOwzAUhs1NopS-AUMWBgaDjy-xM4YWKFKlLiBGy3YSYkgTFEeV-vY4DcIebP3nO758CN0AuQdC5EMmFWZYcIIZZIpioak8QVcsJseAn6IZpACYMZ6doUXkxxoVTCl-jmaEEYozydklWoTwReJgIKVUM_S4bZNV6XxhrG_8cEg-_FD7NhnqMsn7uN-Vg3dJVyV5UfjBd21i2iJZ-b0Pfmq5RheVaUK5-Fvn6P356W25xpvty-sy3-CaST5gS2wFykJaSTAcsvgmAcJJZ1OqDFQFoaSypYtTFJY5YwXLUlFRKAsonWBzdDedW5tG__R-Z_qD7ozX63yjxyz-SnIl6R4iezuxPyY401S9aZ0P_12QqixeziNHJy7EUvtZ9tp23XfQQPRoXkeTmunoUh9F69E8-wWlR3Bu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Decidability Within the Arithmetic of Addition and Divisibility</title><source>Springer Books</source><creator>Bozga, Marius ; Iosif, Radu</creator><contributor>Sassone, Vladimiro</contributor><creatorcontrib>Bozga, Marius ; Iosif, Radu ; Sassone, Vladimiro</creatorcontrib><description>The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and divisibility are the arithmetic of addition, proved by M. Presburger [13], and the purely existential subset, proved by L. Lipshitz [11]. In this paper we define a new decidable fragment of the form QzQ1x1 ... Qnxnϕ(x,z) where the only variable allowed to occur to the left of the divisibility sign is z. For this form, called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} in the paper, we show the existence of a quantifier elimination procedure which always leads to formulas of Presburger arithmetic. We generalize the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} form to ∃ z1,... ∃ zmQ1x1...Qnxnϕ(x,z), where the only variables appearing on the left of divisibility are z1, ..., zm. For this form, called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document}, we show decidability of the positive fragment, namely by reduction to the existential theory of the arithmetic with addition and divisibility. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} fragments were inspired by a real application in the field of program verification. We considered the satisfiability problem for a program logic used for quantitative reasoning about memory shapes, in the case where each record has at most one pointer field. The reduction of this problem to the positive subset of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} is sketched in the end of the paper.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540253884</identifier><identifier>ISBN: 3540253882</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540319824</identifier><identifier>EISBN: 9783540319825</identifier><identifier>DOI: 10.1007/978-3-540-31982-5_27</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Arithmetic Progression ; Atomic Proposition ; Chinese Remainder Theorem ; Computer Science ; Computer science; control theory; systems ; Conjunctive Normal Form ; Elimination Procedure ; Embedded Systems ; Exact sciences and technology ; Software ; Software engineering</subject><ispartof>Foundations of Software Science and Computational Structures, 2005, Vol.3441, p.425-439</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4412-5684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-31982-5_27$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-31982-5_27$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,779,780,784,789,790,793,885,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16895154$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00374872$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Sassone, Vladimiro</contributor><creatorcontrib>Bozga, Marius</creatorcontrib><creatorcontrib>Iosif, Radu</creatorcontrib><title>On Decidability Within the Arithmetic of Addition and Divisibility</title><title>Foundations of Software Science and Computational Structures</title><description>The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and divisibility are the arithmetic of addition, proved by M. Presburger [13], and the purely existential subset, proved by L. Lipshitz [11]. In this paper we define a new decidable fragment of the form QzQ1x1 ... Qnxnϕ(x,z) where the only variable allowed to occur to the left of the divisibility sign is z. For this form, called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} in the paper, we show the existence of a quantifier elimination procedure which always leads to formulas of Presburger arithmetic. We generalize the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} form to ∃ z1,... ∃ zmQ1x1...Qnxnϕ(x,z), where the only variables appearing on the left of divisibility are z1, ..., zm. For this form, called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document}, we show decidability of the positive fragment, namely by reduction to the existential theory of the arithmetic with addition and divisibility. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} fragments were inspired by a real application in the field of program verification. We considered the satisfiability problem for a program logic used for quantitative reasoning about memory shapes, in the case where each record has at most one pointer field. The reduction of this problem to the positive subset of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} is sketched in the end of the paper.</description><subject>Applied sciences</subject><subject>Arithmetic Progression</subject><subject>Atomic Proposition</subject><subject>Chinese Remainder Theorem</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Conjunctive Normal Form</subject><subject>Elimination Procedure</subject><subject>Embedded Systems</subject><subject>Exact sciences and technology</subject><subject>Software</subject><subject>Software engineering</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540253884</isbn><isbn>3540253882</isbn><isbn>3540319824</isbn><isbn>9783540319825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kLtOwzAUhs1NopS-AUMWBgaDjy-xM4YWKFKlLiBGy3YSYkgTFEeV-vY4DcIebP3nO758CN0AuQdC5EMmFWZYcIIZZIpioak8QVcsJseAn6IZpACYMZ6doUXkxxoVTCl-jmaEEYozydklWoTwReJgIKVUM_S4bZNV6XxhrG_8cEg-_FD7NhnqMsn7uN-Vg3dJVyV5UfjBd21i2iJZ-b0Pfmq5RheVaUK5-Fvn6P356W25xpvty-sy3-CaST5gS2wFykJaSTAcsvgmAcJJZ1OqDFQFoaSypYtTFJY5YwXLUlFRKAsonWBzdDedW5tG__R-Z_qD7ozX63yjxyz-SnIl6R4iezuxPyY401S9aZ0P_12QqixeziNHJy7EUvtZ9tp23XfQQPRoXkeTmunoUh9F69E8-wWlR3Bu</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Bozga, Marius</creator><creator>Iosif, Radu</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4412-5684</orcidid></search><sort><creationdate>20050101</creationdate><title>On Decidability Within the Arithmetic of Addition and Divisibility</title><author>Bozga, Marius ; Iosif, Radu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h374t-b0bf18b16f71a419302515c7cb628a1fd020fbecece5db3cab53965f21ed1ec53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Arithmetic Progression</topic><topic>Atomic Proposition</topic><topic>Chinese Remainder Theorem</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Conjunctive Normal Form</topic><topic>Elimination Procedure</topic><topic>Embedded Systems</topic><topic>Exact sciences and technology</topic><topic>Software</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozga, Marius</creatorcontrib><creatorcontrib>Iosif, Radu</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozga, Marius</au><au>Iosif, Radu</au><au>Sassone, Vladimiro</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Decidability Within the Arithmetic of Addition and Divisibility</atitle><btitle>Foundations of Software Science and Computational Structures</btitle><date>2005-01-01</date><risdate>2005</risdate><volume>3441</volume><spage>425</spage><epage>439</epage><pages>425-439</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540253884</isbn><isbn>3540253882</isbn><eisbn>3540319824</eisbn><eisbn>9783540319825</eisbn><abstract>The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and divisibility are the arithmetic of addition, proved by M. Presburger [13], and the purely existential subset, proved by L. Lipshitz [11]. In this paper we define a new decidable fragment of the form QzQ1x1 ... Qnxnϕ(x,z) where the only variable allowed to occur to the left of the divisibility sign is z. For this form, called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} in the paper, we show the existence of a quantifier elimination procedure which always leads to formulas of Presburger arithmetic. We generalize the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} form to ∃ z1,... ∃ zmQ1x1...Qnxnϕ(x,z), where the only variables appearing on the left of divisibility are z1, ..., zm. For this form, called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document}, we show decidability of the positive fragment, namely by reduction to the existential theory of the arithmetic with addition and divisibility. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} fragments were inspired by a real application in the field of program verification. We considered the satisfiability problem for a program logic used for quantitative reasoning about memory shapes, in the case where each record has at most one pointer field. The reduction of this problem to the positive subset of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} is sketched in the end of the paper.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-31982-5_27</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4412-5684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Foundations of Software Science and Computational Structures, 2005, Vol.3441, p.425-439 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16895154 |
source | Springer Books |
subjects | Applied sciences Arithmetic Progression Atomic Proposition Chinese Remainder Theorem Computer Science Computer science control theory systems Conjunctive Normal Form Elimination Procedure Embedded Systems Exact sciences and technology Software Software engineering |
title | On Decidability Within the Arithmetic of Addition and Divisibility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Decidability%20Within%20the%20Arithmetic%20of%20Addition%20and%20Divisibility&rft.btitle=Foundations%20of%20Software%20Science%20and%20Computational%20Structures&rft.au=Bozga,%20Marius&rft.date=2005-01-01&rft.volume=3441&rft.spage=425&rft.epage=439&rft.pages=425-439&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540253884&rft.isbn_list=3540253882&rft_id=info:doi/10.1007/978-3-540-31982-5_27&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_00374872v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540319824&rft.eisbn_list=9783540319825&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |