On Decidability Within the Arithmetic of Addition and Divisibility
The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and di...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The arithmetic of natural numbers with addition and divisibility has been shown undecidable as a consequence of the fact that multiplication of natural numbers can be interpreted into this theory, as shown by J. Robinson [14]. The most important decidable subsets of the arithmetic of addition and divisibility are the arithmetic of addition, proved by M. Presburger [13], and the purely existential subset, proved by L. Lipshitz [11]. In this paper we define a new decidable fragment of the form QzQ1x1 ... Qnxnϕ(x,z) where the only variable allowed to occur to the left of the divisibility sign is z. For this form, called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} in the paper, we show the existence of a quantifier elimination procedure which always leads to formulas of Presburger arithmetic. We generalize the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document} form to ∃ z1,... ∃ zmQ1x1...Qnxnϕ(x,z), where the only variables appearing on the left of divisibility are z1, ..., zm. For this form, called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document}, we show decidability of the positive fragment, namely by reduction to the existential theory of the arithmetic with addition and divisibility. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal L}{_{\mid}^{(1)}}$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\exists{\mathcal L}{_{\mid}^{(*)}}$\end{document} fragments were inspired by a real application in the field o |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-31982-5_27 |