Evolutionary Design of a Brain-Computer Interface
This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalo...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 676 |
---|---|
container_issue | |
container_start_page | 669 |
container_title | |
container_volume | |
creator | Romero, G. Arenas, M. G. Castillo, P. A. Merelo, J. J. |
description | This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalographic (EEG) activity recorded from the scalp must be translated into outputs that control external devices. Our BCI is based in a Multilayer Perceptron (MLP) trained by an EA. This kind of training avoids the main problem of MLPs training algorithms: overfitting. Experimental results produceMLPs with a classification ability better than those in the literature. |
doi_str_mv | 10.1007/11494669_82 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16894884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16894884</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-f4ed256f1a4ffd4d2dd89b5970b0b6dd7de2f6df314381f8991bd40426c050183</originalsourceid><addsrcrecordid>eNpNUD1PwzAUNF8SoWTiD2RhYAi8Z7849gilQKVKLDBbTmxXgTSJ4haJf99UZeCGu-FOp9MxdoNwjwDlAyJpklIbxU9YqkslCgLBESSdsgQlYi4E6TN2dTC45KDEOUtAAM91SeKSpTF-wQSBslSYMFz89O1u2_SdHX-zZx-bdZf1IbPZ02ibLp_3m2G39WO27CYOtvbX7CLYNvr0T2fs82XxMX_LV--vy_njKh846m0eyDteyICWQnDkuHNKV4UuoYJKOlc6z4N0QSAJhUFpjZUjIC5rKACVmLHbY-9gY23bMNqubqIZxmYzTTUolSalaMrdHXNxsrq1H03V99_RIJjDZ-bfZ2IPO0JXng</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolutionary Design of a Brain-Computer Interface</title><source>Springer Books</source><creator>Romero, G. ; Arenas, M. G. ; Castillo, P. A. ; Merelo, J. J.</creator><contributor>Cabestany, Joan ; Sandoval, Francisco ; Prieto, Alberto</contributor><creatorcontrib>Romero, G. ; Arenas, M. G. ; Castillo, P. A. ; Merelo, J. J. ; Cabestany, Joan ; Sandoval, Francisco ; Prieto, Alberto</creatorcontrib><description>This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalographic (EEG) activity recorded from the scalp must be translated into outputs that control external devices. Our BCI is based in a Multilayer Perceptron (MLP) trained by an EA. This kind of training avoids the main problem of MLPs training algorithms: overfitting. Experimental results produceMLPs with a classification ability better than those in the literature.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540262083</identifier><identifier>ISBN: 9783540262084</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540321064</identifier><identifier>EISBN: 3540321063</identifier><identifier>DOI: 10.1007/11494669_82</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Brain Computer Interfacing ; Computer science; control theory; systems ; Evolutionary Design ; Exact sciences and technology ; Learning and adaptive systems ; Minimal Expert ; Slow Cortical Potential ; Training Test</subject><ispartof>Computational Intelligence and Bioinspired Systems, 2005, p.669-676</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11494669_82$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11494669_82$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27904,38234,41420,42489</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16894884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Cabestany, Joan</contributor><contributor>Sandoval, Francisco</contributor><contributor>Prieto, Alberto</contributor><creatorcontrib>Romero, G.</creatorcontrib><creatorcontrib>Arenas, M. G.</creatorcontrib><creatorcontrib>Castillo, P. A.</creatorcontrib><creatorcontrib>Merelo, J. J.</creatorcontrib><title>Evolutionary Design of a Brain-Computer Interface</title><title>Computational Intelligence and Bioinspired Systems</title><description>This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalographic (EEG) activity recorded from the scalp must be translated into outputs that control external devices. Our BCI is based in a Multilayer Perceptron (MLP) trained by an EA. This kind of training avoids the main problem of MLPs training algorithms: overfitting. Experimental results produceMLPs with a classification ability better than those in the literature.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Brain Computer Interfacing</subject><subject>Computer science; control theory; systems</subject><subject>Evolutionary Design</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Minimal Expert</subject><subject>Slow Cortical Potential</subject><subject>Training Test</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540262083</isbn><isbn>9783540262084</isbn><isbn>9783540321064</isbn><isbn>3540321063</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUD1PwzAUNF8SoWTiD2RhYAi8Z7849gilQKVKLDBbTmxXgTSJ4haJf99UZeCGu-FOp9MxdoNwjwDlAyJpklIbxU9YqkslCgLBESSdsgQlYi4E6TN2dTC45KDEOUtAAM91SeKSpTF-wQSBslSYMFz89O1u2_SdHX-zZx-bdZf1IbPZ02ibLp_3m2G39WO27CYOtvbX7CLYNvr0T2fs82XxMX_LV--vy_njKh846m0eyDteyICWQnDkuHNKV4UuoYJKOlc6z4N0QSAJhUFpjZUjIC5rKACVmLHbY-9gY23bMNqubqIZxmYzTTUolSalaMrdHXNxsrq1H03V99_RIJjDZ-bfZ2IPO0JXng</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Romero, G.</creator><creator>Arenas, M. G.</creator><creator>Castillo, P. A.</creator><creator>Merelo, J. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Evolutionary Design of a Brain-Computer Interface</title><author>Romero, G. ; Arenas, M. G. ; Castillo, P. A. ; Merelo, J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-f4ed256f1a4ffd4d2dd89b5970b0b6dd7de2f6df314381f8991bd40426c050183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Brain Computer Interfacing</topic><topic>Computer science; control theory; systems</topic><topic>Evolutionary Design</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Minimal Expert</topic><topic>Slow Cortical Potential</topic><topic>Training Test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero, G.</creatorcontrib><creatorcontrib>Arenas, M. G.</creatorcontrib><creatorcontrib>Castillo, P. A.</creatorcontrib><creatorcontrib>Merelo, J. J.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romero, G.</au><au>Arenas, M. G.</au><au>Castillo, P. A.</au><au>Merelo, J. J.</au><au>Cabestany, Joan</au><au>Sandoval, Francisco</au><au>Prieto, Alberto</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolutionary Design of a Brain-Computer Interface</atitle><btitle>Computational Intelligence and Bioinspired Systems</btitle><date>2005</date><risdate>2005</risdate><spage>669</spage><epage>676</epage><pages>669-676</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540262083</isbn><isbn>9783540262084</isbn><eisbn>9783540321064</eisbn><eisbn>3540321063</eisbn><abstract>This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalographic (EEG) activity recorded from the scalp must be translated into outputs that control external devices. Our BCI is based in a Multilayer Perceptron (MLP) trained by an EA. This kind of training avoids the main problem of MLPs training algorithms: overfitting. Experimental results produceMLPs with a classification ability better than those in the literature.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11494669_82</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computational Intelligence and Bioinspired Systems, 2005, p.669-676 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16894884 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Brain Computer Interfacing Computer science control theory systems Evolutionary Design Exact sciences and technology Learning and adaptive systems Minimal Expert Slow Cortical Potential Training Test |
title | Evolutionary Design of a Brain-Computer Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolutionary%20Design%20of%20a%20Brain-Computer%20Interface&rft.btitle=Computational%20Intelligence%20and%20Bioinspired%20Systems&rft.au=Romero,%20G.&rft.date=2005&rft.spage=669&rft.epage=676&rft.pages=669-676&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540262083&rft.isbn_list=9783540262084&rft_id=info:doi/10.1007/11494669_82&rft_dat=%3Cpascalfrancis_sprin%3E16894884%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540321064&rft.eisbn_list=3540321063&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |