Evolutionary Design of a Brain-Computer Interface

This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Romero, G., Arenas, M. G., Castillo, P. A., Merelo, J. J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 676
container_issue
container_start_page 669
container_title
container_volume
creator Romero, G.
Arenas, M. G.
Castillo, P. A.
Merelo, J. J.
description This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalographic (EEG) activity recorded from the scalp must be translated into outputs that control external devices. Our BCI is based in a Multilayer Perceptron (MLP) trained by an EA. This kind of training avoids the main problem of MLPs training algorithms: overfitting. Experimental results produceMLPs with a classification ability better than those in the literature.
doi_str_mv 10.1007/11494669_82
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16894884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16894884</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-f4ed256f1a4ffd4d2dd89b5970b0b6dd7de2f6df314381f8991bd40426c050183</originalsourceid><addsrcrecordid>eNpNUD1PwzAUNF8SoWTiD2RhYAi8Z7849gilQKVKLDBbTmxXgTSJ4haJf99UZeCGu-FOp9MxdoNwjwDlAyJpklIbxU9YqkslCgLBESSdsgQlYi4E6TN2dTC45KDEOUtAAM91SeKSpTF-wQSBslSYMFz89O1u2_SdHX-zZx-bdZf1IbPZ02ibLp_3m2G39WO27CYOtvbX7CLYNvr0T2fs82XxMX_LV--vy_njKh846m0eyDteyICWQnDkuHNKV4UuoYJKOlc6z4N0QSAJhUFpjZUjIC5rKACVmLHbY-9gY23bMNqubqIZxmYzTTUolSalaMrdHXNxsrq1H03V99_RIJjDZ-bfZ2IPO0JXng</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolutionary Design of a Brain-Computer Interface</title><source>Springer Books</source><creator>Romero, G. ; Arenas, M. G. ; Castillo, P. A. ; Merelo, J. J.</creator><contributor>Cabestany, Joan ; Sandoval, Francisco ; Prieto, Alberto</contributor><creatorcontrib>Romero, G. ; Arenas, M. G. ; Castillo, P. A. ; Merelo, J. J. ; Cabestany, Joan ; Sandoval, Francisco ; Prieto, Alberto</creatorcontrib><description>This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalographic (EEG) activity recorded from the scalp must be translated into outputs that control external devices. Our BCI is based in a Multilayer Perceptron (MLP) trained by an EA. This kind of training avoids the main problem of MLPs training algorithms: overfitting. Experimental results produceMLPs with a classification ability better than those in the literature.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540262083</identifier><identifier>ISBN: 9783540262084</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540321064</identifier><identifier>EISBN: 3540321063</identifier><identifier>DOI: 10.1007/11494669_82</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Brain Computer Interfacing ; Computer science; control theory; systems ; Evolutionary Design ; Exact sciences and technology ; Learning and adaptive systems ; Minimal Expert ; Slow Cortical Potential ; Training Test</subject><ispartof>Computational Intelligence and Bioinspired Systems, 2005, p.669-676</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11494669_82$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11494669_82$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27904,38234,41420,42489</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16894884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Cabestany, Joan</contributor><contributor>Sandoval, Francisco</contributor><contributor>Prieto, Alberto</contributor><creatorcontrib>Romero, G.</creatorcontrib><creatorcontrib>Arenas, M. G.</creatorcontrib><creatorcontrib>Castillo, P. A.</creatorcontrib><creatorcontrib>Merelo, J. J.</creatorcontrib><title>Evolutionary Design of a Brain-Computer Interface</title><title>Computational Intelligence and Bioinspired Systems</title><description>This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalographic (EEG) activity recorded from the scalp must be translated into outputs that control external devices. Our BCI is based in a Multilayer Perceptron (MLP) trained by an EA. This kind of training avoids the main problem of MLPs training algorithms: overfitting. Experimental results produceMLPs with a classification ability better than those in the literature.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Brain Computer Interfacing</subject><subject>Computer science; control theory; systems</subject><subject>Evolutionary Design</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Minimal Expert</subject><subject>Slow Cortical Potential</subject><subject>Training Test</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540262083</isbn><isbn>9783540262084</isbn><isbn>9783540321064</isbn><isbn>3540321063</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUD1PwzAUNF8SoWTiD2RhYAi8Z7849gilQKVKLDBbTmxXgTSJ4haJf99UZeCGu-FOp9MxdoNwjwDlAyJpklIbxU9YqkslCgLBESSdsgQlYi4E6TN2dTC45KDEOUtAAM91SeKSpTF-wQSBslSYMFz89O1u2_SdHX-zZx-bdZf1IbPZ02ibLp_3m2G39WO27CYOtvbX7CLYNvr0T2fs82XxMX_LV--vy_njKh846m0eyDteyICWQnDkuHNKV4UuoYJKOlc6z4N0QSAJhUFpjZUjIC5rKACVmLHbY-9gY23bMNqubqIZxmYzTTUolSalaMrdHXNxsrq1H03V99_RIJjDZ-bfZ2IPO0JXng</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Romero, G.</creator><creator>Arenas, M. G.</creator><creator>Castillo, P. A.</creator><creator>Merelo, J. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Evolutionary Design of a Brain-Computer Interface</title><author>Romero, G. ; Arenas, M. G. ; Castillo, P. A. ; Merelo, J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-f4ed256f1a4ffd4d2dd89b5970b0b6dd7de2f6df314381f8991bd40426c050183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Brain Computer Interfacing</topic><topic>Computer science; control theory; systems</topic><topic>Evolutionary Design</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Minimal Expert</topic><topic>Slow Cortical Potential</topic><topic>Training Test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero, G.</creatorcontrib><creatorcontrib>Arenas, M. G.</creatorcontrib><creatorcontrib>Castillo, P. A.</creatorcontrib><creatorcontrib>Merelo, J. J.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romero, G.</au><au>Arenas, M. G.</au><au>Castillo, P. A.</au><au>Merelo, J. J.</au><au>Cabestany, Joan</au><au>Sandoval, Francisco</au><au>Prieto, Alberto</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolutionary Design of a Brain-Computer Interface</atitle><btitle>Computational Intelligence and Bioinspired Systems</btitle><date>2005</date><risdate>2005</risdate><spage>669</spage><epage>676</epage><pages>669-676</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540262083</isbn><isbn>9783540262084</isbn><eisbn>9783540321064</eisbn><eisbn>3540321063</eisbn><abstract>This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalographic (EEG) activity recorded from the scalp must be translated into outputs that control external devices. Our BCI is based in a Multilayer Perceptron (MLP) trained by an EA. This kind of training avoids the main problem of MLPs training algorithms: overfitting. Experimental results produceMLPs with a classification ability better than those in the literature.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11494669_82</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Intelligence and Bioinspired Systems, 2005, p.669-676
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16894884
source Springer Books
subjects Applied sciences
Artificial intelligence
Brain Computer Interfacing
Computer science
control theory
systems
Evolutionary Design
Exact sciences and technology
Learning and adaptive systems
Minimal Expert
Slow Cortical Potential
Training Test
title Evolutionary Design of a Brain-Computer Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolutionary%20Design%20of%20a%20Brain-Computer%20Interface&rft.btitle=Computational%20Intelligence%20and%20Bioinspired%20Systems&rft.au=Romero,%20G.&rft.date=2005&rft.spage=669&rft.epage=676&rft.pages=669-676&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540262083&rft.isbn_list=9783540262084&rft_id=info:doi/10.1007/11494669_82&rft_dat=%3Cpascalfrancis_sprin%3E16894884%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540321064&rft.eisbn_list=3540321063&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true