Evolutionary Design of a Brain-Computer Interface
This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalo...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalographic (EEG) activity recorded from the scalp must be translated into outputs that control external devices. Our BCI is based in a Multilayer Perceptron (MLP) trained by an EA. This kind of training avoids the main problem of MLPs training algorithms: overfitting. Experimental results produceMLPs with a classification ability better than those in the literature. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11494669_82 |