Evolutionary Design of a Brain-Computer Interface

This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Romero, G., Arenas, M. G., Castillo, P. A., Merelo, J. J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper shows how Evolutionary Algorithm (EA) robustness help to solve a difficult problem with a minimal expert knowledge about it. The problem consist in the design of a Brain-Computer Interface (BCI), which allows a person to communicate without using nerves and muscles. Input electroencephalographic (EEG) activity recorded from the scalp must be translated into outputs that control external devices. Our BCI is based in a Multilayer Perceptron (MLP) trained by an EA. This kind of training avoids the main problem of MLPs training algorithms: overfitting. Experimental results produceMLPs with a classification ability better than those in the literature.
ISSN:0302-9743
1611-3349
DOI:10.1007/11494669_82