Ultra-wideband Nearfield Adaptive Beamforming Based on a RBF Neural Network
An adaptive beamforming method based on radial-basis function (RBF) neural network is examined for ultra-wideband (UWB) array illuminated by nearfield source in this paper. An analysis of the principle of space-time processing employing Gaussian monocycle model as UWB signal is conducted. The nearfi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An adaptive beamforming method based on radial-basis function (RBF) neural network is examined for ultra-wideband (UWB) array illuminated by nearfield source in this paper. An analysis of the principle of space-time processing employing Gaussian monocycle model as UWB signal is conducted. The nearfield regionally constrain of UWB beamformer is reflected by a set of samples exerted on neural network training sample space. The recursive least square algorithm has been used for network weights updating. It improves the robustness against large errors in distance and directions of arrival. The efficiency and feasibility of presented approach is proved through the experimental results. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11427445_92 |