New Methodology of Computer Aided Diagnostic System on Breast Cancer

In this paper, a new approach using ANFIS as a diagnosis system on WBCD problem is proposed. The automatic diagnosis of breast cancer is an important, real-world medical problem. It is occasionally difficult to attain the ultimate diagnosis even for medical experts due to the complexity and non-line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Song, HeeJun, Lee, SeonGu, Kim, Dongwon, Park, GwiTae
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 789
container_issue
container_start_page 780
container_title
container_volume
creator Song, HeeJun
Lee, SeonGu
Kim, Dongwon
Park, GwiTae
description In this paper, a new approach using ANFIS as a diagnosis system on WBCD problem is proposed. The automatic diagnosis of breast cancer is an important, real-world medical problem. It is occasionally difficult to attain the ultimate diagnosis even for medical experts due to the complexity and non-linearity of the relationships between the large measured factors. It is possibly resolved with using AI algorithms. ANFIS is an AI algorithm which has the advantages of both fuzzy inference system and neural networks. Therefore, it can deal with ambiguous data and learn from the past data. Applying ANFIS as a diagnostic system was considered in our experiment. In addition, the computational performance of diagnosis system is an important issue as well as the output correctness of the inference system. Methods of using recommended inputs generated by the Genetic-Algorithm, Decision-Tree and Correlation-Coefficient computation with ANFIS was proposed to reduce the computational overhead.
doi_str_mv 10.1007/11427469_124
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16882624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16882624</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-11cd6123195a06dfff85fde3d0574c7d19503705e124a9958d4ed083832c68e93</originalsourceid><addsrcrecordid>eNpNUMtOwzAQNC-JUnrjA3zhghTY9SvxEVJeUoEDcLZM7JRAG0d2EOrfY1QO7GWkmdGsZgg5QThHgPICUbBSKG2QiR1yxKUAzkBpuUsmqBALzoXe2wpMahTlPpkAB1boUvBDMkvpA_JxVJmdkPmj_6YPfnwPLqzCckNDS-uwHr5GH-ll57yj884u-5DGrqHPmzT6NQ09vYreppHWtm98PCYHrV0lP_vDKXm9uX6p74rF0-19fbkoBsZgLBAbp5Bx1NKCcm3bVrJ1njuQpWhKl3ngJUifu1mtZeWEd1DxirNGVV7zKTnd5g42NXbVxvy9S2aI3drGjUFVVUwxkX1nW1_KUr_00byF8JkMgvkd0fwfkf8AIjxdCA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>New Methodology of Computer Aided Diagnostic System on Breast Cancer</title><source>Springer Books</source><creator>Song, HeeJun ; Lee, SeonGu ; Kim, Dongwon ; Park, GwiTae</creator><contributor>Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</contributor><creatorcontrib>Song, HeeJun ; Lee, SeonGu ; Kim, Dongwon ; Park, GwiTae ; Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</creatorcontrib><description>In this paper, a new approach using ANFIS as a diagnosis system on WBCD problem is proposed. The automatic diagnosis of breast cancer is an important, real-world medical problem. It is occasionally difficult to attain the ultimate diagnosis even for medical experts due to the complexity and non-linearity of the relationships between the large measured factors. It is possibly resolved with using AI algorithms. ANFIS is an AI algorithm which has the advantages of both fuzzy inference system and neural networks. Therefore, it can deal with ambiguous data and learn from the past data. Applying ANFIS as a diagnostic system was considered in our experiment. In addition, the computational performance of diagnosis system is an important issue as well as the output correctness of the inference system. Methods of using recommended inputs generated by the Genetic-Algorithm, Decision-Tree and Correlation-Coefficient computation with ANFIS was proposed to reduce the computational overhead.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540259147</identifier><identifier>ISBN: 9783540259145</identifier><identifier>ISBN: 9783540259121</identifier><identifier>ISBN: 3540259120</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320695</identifier><identifier>EISBN: 9783540320692</identifier><identifier>DOI: 10.1007/11427469_124</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Diagnosis System ; Exact sciences and technology ; Fuzzy Inference System ; Genetic Algorithm ; Inference System ; Learning and adaptive systems ; Ultimate Diagnosis</subject><ispartof>Advances in Neural Networks – ISNN 2005, 2005, p.780-789</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11427469_124$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11427469_124$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16882624$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yi, Zhang</contributor><contributor>Liao, Xiao-Feng</contributor><contributor>Wang, Jun</contributor><creatorcontrib>Song, HeeJun</creatorcontrib><creatorcontrib>Lee, SeonGu</creatorcontrib><creatorcontrib>Kim, Dongwon</creatorcontrib><creatorcontrib>Park, GwiTae</creatorcontrib><title>New Methodology of Computer Aided Diagnostic System on Breast Cancer</title><title>Advances in Neural Networks – ISNN 2005</title><description>In this paper, a new approach using ANFIS as a diagnosis system on WBCD problem is proposed. The automatic diagnosis of breast cancer is an important, real-world medical problem. It is occasionally difficult to attain the ultimate diagnosis even for medical experts due to the complexity and non-linearity of the relationships between the large measured factors. It is possibly resolved with using AI algorithms. ANFIS is an AI algorithm which has the advantages of both fuzzy inference system and neural networks. Therefore, it can deal with ambiguous data and learn from the past data. Applying ANFIS as a diagnostic system was considered in our experiment. In addition, the computational performance of diagnosis system is an important issue as well as the output correctness of the inference system. Methods of using recommended inputs generated by the Genetic-Algorithm, Decision-Tree and Correlation-Coefficient computation with ANFIS was proposed to reduce the computational overhead.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Diagnosis System</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Inference System</subject><subject>Genetic Algorithm</subject><subject>Inference System</subject><subject>Learning and adaptive systems</subject><subject>Ultimate Diagnosis</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540259147</isbn><isbn>9783540259145</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><isbn>3540320695</isbn><isbn>9783540320692</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUMtOwzAQNC-JUnrjA3zhghTY9SvxEVJeUoEDcLZM7JRAG0d2EOrfY1QO7GWkmdGsZgg5QThHgPICUbBSKG2QiR1yxKUAzkBpuUsmqBALzoXe2wpMahTlPpkAB1boUvBDMkvpA_JxVJmdkPmj_6YPfnwPLqzCckNDS-uwHr5GH-ll57yj884u-5DGrqHPmzT6NQ09vYreppHWtm98PCYHrV0lP_vDKXm9uX6p74rF0-19fbkoBsZgLBAbp5Bx1NKCcm3bVrJ1njuQpWhKl3ngJUifu1mtZeWEd1DxirNGVV7zKTnd5g42NXbVxvy9S2aI3drGjUFVVUwxkX1nW1_KUr_00byF8JkMgvkd0fwfkf8AIjxdCA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Song, HeeJun</creator><creator>Lee, SeonGu</creator><creator>Kim, Dongwon</creator><creator>Park, GwiTae</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>New Methodology of Computer Aided Diagnostic System on Breast Cancer</title><author>Song, HeeJun ; Lee, SeonGu ; Kim, Dongwon ; Park, GwiTae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-11cd6123195a06dfff85fde3d0574c7d19503705e124a9958d4ed083832c68e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Diagnosis System</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Inference System</topic><topic>Genetic Algorithm</topic><topic>Inference System</topic><topic>Learning and adaptive systems</topic><topic>Ultimate Diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, HeeJun</creatorcontrib><creatorcontrib>Lee, SeonGu</creatorcontrib><creatorcontrib>Kim, Dongwon</creatorcontrib><creatorcontrib>Park, GwiTae</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, HeeJun</au><au>Lee, SeonGu</au><au>Kim, Dongwon</au><au>Park, GwiTae</au><au>Yi, Zhang</au><au>Liao, Xiao-Feng</au><au>Wang, Jun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New Methodology of Computer Aided Diagnostic System on Breast Cancer</atitle><btitle>Advances in Neural Networks – ISNN 2005</btitle><date>2005</date><risdate>2005</risdate><spage>780</spage><epage>789</epage><pages>780-789</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540259147</isbn><isbn>9783540259145</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><eisbn>3540320695</eisbn><eisbn>9783540320692</eisbn><abstract>In this paper, a new approach using ANFIS as a diagnosis system on WBCD problem is proposed. The automatic diagnosis of breast cancer is an important, real-world medical problem. It is occasionally difficult to attain the ultimate diagnosis even for medical experts due to the complexity and non-linearity of the relationships between the large measured factors. It is possibly resolved with using AI algorithms. ANFIS is an AI algorithm which has the advantages of both fuzzy inference system and neural networks. Therefore, it can deal with ambiguous data and learn from the past data. Applying ANFIS as a diagnostic system was considered in our experiment. In addition, the computational performance of diagnosis system is an important issue as well as the output correctness of the inference system. Methods of using recommended inputs generated by the Genetic-Algorithm, Decision-Tree and Correlation-Coefficient computation with ANFIS was proposed to reduce the computational overhead.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11427469_124</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Neural Networks – ISNN 2005, 2005, p.780-789
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16882624
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Diagnosis System
Exact sciences and technology
Fuzzy Inference System
Genetic Algorithm
Inference System
Learning and adaptive systems
Ultimate Diagnosis
title New Methodology of Computer Aided Diagnostic System on Breast Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20Methodology%20of%20Computer%20Aided%20Diagnostic%20System%20on%20Breast%20Cancer&rft.btitle=Advances%20in%20Neural%20Networks%20%E2%80%93%20ISNN%202005&rft.au=Song,%20HeeJun&rft.date=2005&rft.spage=780&rft.epage=789&rft.pages=780-789&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540259147&rft.isbn_list=9783540259145&rft.isbn_list=9783540259121&rft.isbn_list=3540259120&rft_id=info:doi/10.1007/11427469_124&rft_dat=%3Cpascalfrancis_sprin%3E16882624%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320695&rft.eisbn_list=9783540320692&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true