New Methodology of Computer Aided Diagnostic System on Breast Cancer

In this paper, a new approach using ANFIS as a diagnosis system on WBCD problem is proposed. The automatic diagnosis of breast cancer is an important, real-world medical problem. It is occasionally difficult to attain the ultimate diagnosis even for medical experts due to the complexity and non-line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Song, HeeJun, Lee, SeonGu, Kim, Dongwon, Park, GwiTae
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new approach using ANFIS as a diagnosis system on WBCD problem is proposed. The automatic diagnosis of breast cancer is an important, real-world medical problem. It is occasionally difficult to attain the ultimate diagnosis even for medical experts due to the complexity and non-linearity of the relationships between the large measured factors. It is possibly resolved with using AI algorithms. ANFIS is an AI algorithm which has the advantages of both fuzzy inference system and neural networks. Therefore, it can deal with ambiguous data and learn from the past data. Applying ANFIS as a diagnostic system was considered in our experiment. In addition, the computational performance of diagnosis system is an important issue as well as the output correctness of the inference system. Methods of using recommended inputs generated by the Genetic-Algorithm, Decision-Tree and Correlation-Coefficient computation with ANFIS was proposed to reduce the computational overhead.
ISSN:0302-9743
1611-3349
DOI:10.1007/11427469_124