An Artificial Neural Network Method for Map Correction
Raster map should be corrected after scanned because of the errors caused by paper map deformation. In the paper, the deficiency of the polynomial fitting method is analyzed. The paper introduces an ANN (Artificial Neural Network) correcting method that utilizes the advantage of its function approxi...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Raster map should be corrected after scanned because of the errors caused by paper map deformation. In the paper, the deficiency of the polynomial fitting method is analyzed. The paper introduces an ANN (Artificial Neural Network) correcting method that utilizes the advantage of its function approximation ability. In the paper, two types of ANNs, BP and GRNN, are designed for the correcting. The comparing experiment is done with the same data by the polynomial fitting and ANN methods, utilizing the MALAB. The experiment results show that the ANN methods, especially the GRNN method, performances far better than the polynomial fitting method does. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11427469_159 |