An Artificial Neural Network Method for Map Correction

Raster map should be corrected after scanned because of the errors caused by paper map deformation. In the paper, the deficiency of the polynomial fitting method is analyzed. The paper introduces an ANN (Artificial Neural Network) correcting method that utilizes the advantage of its function approxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chai, Yi, Guo, Maoyun, Li, Shangfu, Zhang, Zhifen, Feng, Dalong
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Raster map should be corrected after scanned because of the errors caused by paper map deformation. In the paper, the deficiency of the polynomial fitting method is analyzed. The paper introduces an ANN (Artificial Neural Network) correcting method that utilizes the advantage of its function approximation ability. In the paper, two types of ANNs, BP and GRNN, are designed for the correcting. The comparing experiment is done with the same data by the polynomial fitting and ANN methods, utilizing the MALAB. The experiment results show that the ANN methods, especially the GRNN method, performances far better than the polynomial fitting method does.
ISSN:0302-9743
1611-3349
DOI:10.1007/11427469_159