Molecular Aspects of Biogenesis of Escherichia coli Dr Fimbriae: Characterization of DraB-DraE Complexes
The Dr hemagglutinin of uropathogenic Escherichia coli is a fimbrial homopolymer of DraE subunits encoded by the dra operon. The dra operon includes the draB and draC genes, whose products exhibit homology to chaperone-usher proteins involved in the biogenesis of surface-located polymeric structures...
Gespeichert in:
Veröffentlicht in: | Infection and Immunity 2005, Vol.73 (1), p.135-145 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Dr hemagglutinin of uropathogenic Escherichia coli is a fimbrial homopolymer of DraE subunits encoded by the dra operon. The dra operon includes the draB and draC genes, whose products exhibit homology to chaperone-usher proteins involved in the biogenesis of surface-located polymeric structures. DraB is one of the periplasmic proteins belonging to the superfamily of PapD-like chaperones. It possesses two conserved cysteine residues characteristic of the FGL subfamily of Caf1M-like chaperones. In this study we obtained evidence that DraB cysteines form a disulfide bond in a mature chaperone and have the crucial function of forming the DraB-DraE binary complex. Expression experiments showed that the DraB protein is indispensable in the folding of the DraE subunit to a form capable of polymerization. Accumulation of DraB-DraE[subscript n] oligomers, composed of head-to-tail subunits and the chaperone DraB, was observed in the periplasm of a recombinant E. coli strain which expressed DraB and DraE (but not DraC). To investigate the donor strand exchange mechanism during the formation of DraE oligomers, we constructed a series of DraE N-terminal deletion mutants. Deletion of the first three N-terminal residues of a potential donor strand resulted in a DraE protein lacking an oligomerization function. In vitro data showed that the DraE disulfide bond was not needed to form a binary complex with the DraB chaperone but was essential in the polymerization process. Our data suggest that assembly of Dr fimbriae requires a chaperone-usher pathway and the donor strand exchange mechanism. |
---|---|
ISSN: | 0019-9567 1098-5522 |
DOI: | 10.1128/IAI.73.1.135-145.2005 |