Bayesian and regularization methods for hyperparameter estimation in image restoration

In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 1999-02, Vol.8 (2), p.231-246
Hauptverfasser: Molina, R., Katsaggelos, A.K., Mateos, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 246
container_issue 2
container_start_page 231
container_title IEEE transactions on image processing
container_volume 8
creator Molina, R.
Katsaggelos, A.K.
Mateos, J.
description In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appropriate than the MAP approach for the image restoration problem. We furthermore study the relationship between the evidence and an iterative approach resulting from the set theoretic regularization approach for estimating the two hyperparameters, or their ratio, defined as the regularization parameter. Finally the proposed algorithms are tested experimentally.
doi_str_mv 10.1109/83.743857
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_1663463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>743857</ieee_id><sourcerecordid>26868797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-ebaa825ef6b082df786d0b5579270677ebe0106f27dbf92946906fb74404c0f13</originalsourceid><addsrcrecordid>eNqF0b1v1TAQAHALUdEPGFgZUAZE2yHlznF89ghVaStVYgHWyEnObVA-Hnbe8PrX120iuhXJku3zz3eyT4j3CGeIYL-Y4oxUYUp6JQ7QKswBlHyd1lBSTqjsvjiM8Q8AqhL1G7GPRmpSBAfi9ze349i5MXNjmwW-3fYudPdu7qYxG3i-m9qY-Slkd7sNh40LLgU5ZBznblhUl8bgbjndjvMUnoJvxZ53feR363wkfn2_-Hl-ld_8uLw-_3qTN8rinHPtnJEle12Dka0no1uoy5KsJNBEXDMgaC-prb2VVmmbdjUpBaoBj8WROF7ybsL0d5vqV0MXG-57N_K0jRUVCo1BoCQ_vyilQSu10v-H2mhD9jHjyYsQNWFB6dPLRE8X2oQpxsC-2oT0Z2FXIVSPLaxMUS0tTPbjmnZbD9w-y7VnCXxagYuN631wY9PFZ6d1kZ6R2IeFdcz873Qt8gC5iqqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671370015</pqid></control><display><type>article</type><title>Bayesian and regularization methods for hyperparameter estimation in image restoration</title><source>IEEE Electronic Library (IEL)</source><creator>Molina, R. ; Katsaggelos, A.K. ; Mateos, J.</creator><creatorcontrib>Molina, R. ; Katsaggelos, A.K. ; Mateos, J.</creatorcontrib><description>In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appropriate than the MAP approach for the image restoration problem. We furthermore study the relationship between the evidence and an iterative approach resulting from the set theoretic regularization approach for estimating the two hyperparameters, or their ratio, defined as the regularization parameter. Finally the proposed algorithms are tested experimentally.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.743857</identifier><identifier>PMID: 18267470</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Bayesian analysis ; Bayesian methods ; Degradation ; Estimating ; Exact sciences and technology ; Image analysis ; Image processing ; Image restoration ; Information, signal and communications theory ; Iterative algorithms ; Iterative methods ; Lead ; Least squares approximation ; Mathematical analysis ; Parameter estimation ; Regularization ; Signal processing ; Telecommunications and information theory ; Testing</subject><ispartof>IEEE transactions on image processing, 1999-02, Vol.8 (2), p.231-246</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-ebaa825ef6b082df786d0b5579270677ebe0106f27dbf92946906fb74404c0f13</citedby><cites>FETCH-LOGICAL-c491t-ebaa825ef6b082df786d0b5579270677ebe0106f27dbf92946906fb74404c0f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/743857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/743857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1663463$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18267470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Molina, R.</creatorcontrib><creatorcontrib>Katsaggelos, A.K.</creatorcontrib><creatorcontrib>Mateos, J.</creatorcontrib><title>Bayesian and regularization methods for hyperparameter estimation in image restoration</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appropriate than the MAP approach for the image restoration problem. We furthermore study the relationship between the evidence and an iterative approach resulting from the set theoretic regularization approach for estimating the two hyperparameters, or their ratio, defined as the regularization parameter. Finally the proposed algorithms are tested experimentally.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Degradation</subject><subject>Estimating</subject><subject>Exact sciences and technology</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Lead</subject><subject>Least squares approximation</subject><subject>Mathematical analysis</subject><subject>Parameter estimation</subject><subject>Regularization</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0b1v1TAQAHALUdEPGFgZUAZE2yHlznF89ghVaStVYgHWyEnObVA-Hnbe8PrX120iuhXJku3zz3eyT4j3CGeIYL-Y4oxUYUp6JQ7QKswBlHyd1lBSTqjsvjiM8Q8AqhL1G7GPRmpSBAfi9ze349i5MXNjmwW-3fYudPdu7qYxG3i-m9qY-Slkd7sNh40LLgU5ZBznblhUl8bgbjndjvMUnoJvxZ53feR363wkfn2_-Hl-ld_8uLw-_3qTN8rinHPtnJEle12Dka0no1uoy5KsJNBEXDMgaC-prb2VVmmbdjUpBaoBj8WROF7ybsL0d5vqV0MXG-57N_K0jRUVCo1BoCQ_vyilQSu10v-H2mhD9jHjyYsQNWFB6dPLRE8X2oQpxsC-2oT0Z2FXIVSPLaxMUS0tTPbjmnZbD9w-y7VnCXxagYuN631wY9PFZ6d1kZ6R2IeFdcz873Qt8gC5iqqo</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Molina, R.</creator><creator>Katsaggelos, A.K.</creator><creator>Mateos, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19990201</creationdate><title>Bayesian and regularization methods for hyperparameter estimation in image restoration</title><author>Molina, R. ; Katsaggelos, A.K. ; Mateos, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-ebaa825ef6b082df786d0b5579270677ebe0106f27dbf92946906fb74404c0f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Degradation</topic><topic>Estimating</topic><topic>Exact sciences and technology</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Lead</topic><topic>Least squares approximation</topic><topic>Mathematical analysis</topic><topic>Parameter estimation</topic><topic>Regularization</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molina, R.</creatorcontrib><creatorcontrib>Katsaggelos, A.K.</creatorcontrib><creatorcontrib>Mateos, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Molina, R.</au><au>Katsaggelos, A.K.</au><au>Mateos, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian and regularization methods for hyperparameter estimation in image restoration</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1999-02-01</date><risdate>1999</risdate><volume>8</volume><issue>2</issue><spage>231</spage><epage>246</epage><pages>231-246</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appropriate than the MAP approach for the image restoration problem. We furthermore study the relationship between the evidence and an iterative approach resulting from the set theoretic regularization approach for estimating the two hyperparameters, or their ratio, defined as the regularization parameter. Finally the proposed algorithms are tested experimentally.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18267470</pmid><doi>10.1109/83.743857</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 1999-02, Vol.8 (2), p.231-246
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_1663463
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Bayesian analysis
Bayesian methods
Degradation
Estimating
Exact sciences and technology
Image analysis
Image processing
Image restoration
Information, signal and communications theory
Iterative algorithms
Iterative methods
Lead
Least squares approximation
Mathematical analysis
Parameter estimation
Regularization
Signal processing
Telecommunications and information theory
Testing
title Bayesian and regularization methods for hyperparameter estimation in image restoration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20and%20regularization%20methods%20for%20hyperparameter%20estimation%20in%20image%20restoration&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Molina,%20R.&rft.date=1999-02-01&rft.volume=8&rft.issue=2&rft.spage=231&rft.epage=246&rft.pages=231-246&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.743857&rft_dat=%3Cproquest_RIE%3E26868797%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671370015&rft_id=info:pmid/18267470&rft_ieee_id=743857&rfr_iscdi=true