Bayesian and regularization methods for hyperparameter estimation in image restoration

In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 1999-02, Vol.8 (2), p.231-246
Hauptverfasser: Molina, R., Katsaggelos, A.K., Mateos, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appropriate than the MAP approach for the image restoration problem. We furthermore study the relationship between the evidence and an iterative approach resulting from the set theoretic regularization approach for estimating the two hyperparameters, or their ratio, defined as the regularization parameter. Finally the proposed algorithms are tested experimentally.
ISSN:1057-7149
1941-0042
DOI:10.1109/83.743857