Wafer-based nanostructure manufacturing for integrated nanooptic devices

The authors have developed a nanomanufacturing platform based on wafer-level nanoreplication with mold and nanopattern transfer by nanolithography. The nanoreplication process, which is based on imprinting a single-layer spin-coated ultraviolet (UV)-curable resist, achieved good nanopatterning fidel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2005-02, Vol.23 (2), p.474-485
Hauptverfasser: Wang, J.J., Lei Chen, Tai, S., Xuegong Deng, Sciortino, P.F., Jiandong Deng, Feng Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors have developed a nanomanufacturing platform based on wafer-level nanoreplication with mold and nanopattern transfer by nanolithography. The nanoreplication process, which is based on imprinting a single-layer spin-coated ultraviolet (UV)-curable resist, achieved good nanopatterning fidelity and on-wafer uniformity with high throughput. Some manufacturing issues of the nanoreplication process, such as the impact of wafer and mold surface particles on nanoreplication yield, are also discussed. Nano-optic devices, such as, quarter-wave plates and polarizers, were manufactured with the nanomanufacturing platform. An average wafer-level optical performance yield of 86% was achieved. The developed technology is applied for high-throughput and low-cost manufacturing nanostructure-based optical devices and integrated optical devices.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2004.842298